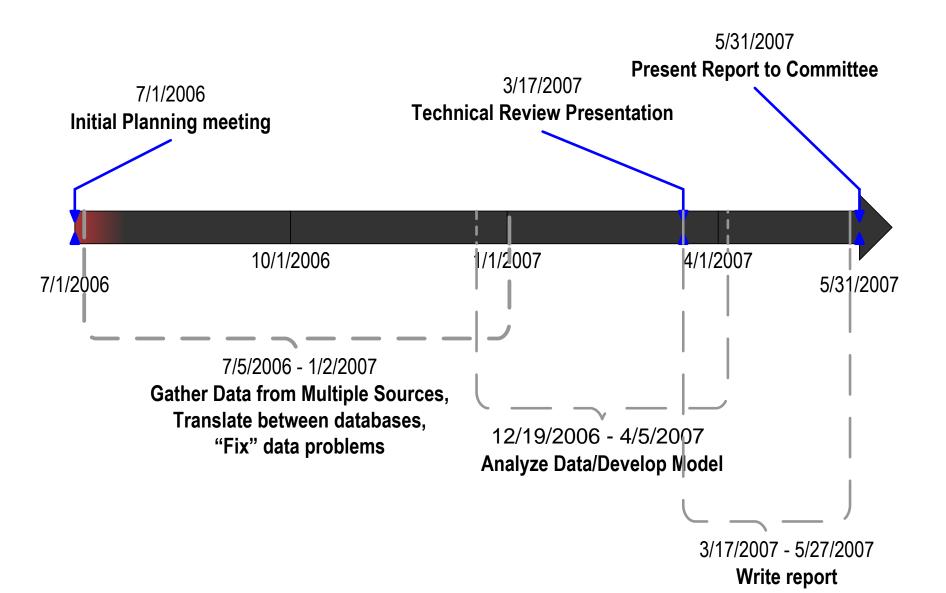
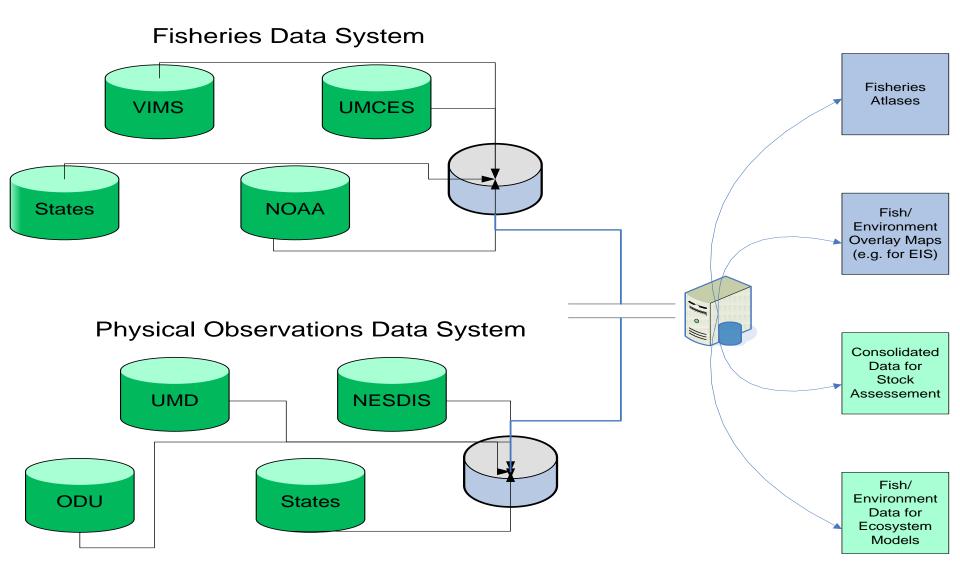

The Oyster Data Tool: Compiling State and Federal Oyster-related Data into a Single Database


Ideal View of Providing Science For Ecosystem-based Restoration

Ideal timeline for completing analysis/modeling project


Real timeline for completing analysis/modeling project

Reasons we ought to be integrating data

- International Council for the Exploration of the Seas "By maximizing the availability of data to the community at-large, ICES promotes the use of these data, thereby ensuring that their maximum value can be realized and thus contribute to an increased understanding of the marine environment."
- National Research Council Report 2006 <u>Dynamic Changes in Marine Ecosystems</u>-"Fisheries data currently are fragmented and dispersed, thus slowing the use of these data in comprehensive analysis...Better data management is fundamental to implementing ecosystem-based management of fisheries."
- NOAA- Key Science needs to support EAM "Modeling, experimental ecology, and observation systems linked to support adaptive approaches to human uses of marine ecosystems consistent with goals of sustainable use"

Chesapeake Bay Ecosystem Integrated Information Systems (CBEIIS) – Expediting Data delivery and Integration

First steps towards expedited and integrated data delivery

- Chesapeake Bay Ecosystem Integrated Information Systems (CBEIIS) – Incorporating Oysters:
 - Comprehensive Chesapeake Oyster Database

		16/2008					Barl	
Bar Name BIG ANN		*		Barl	Region	BIG ANNEME	SSEX R	IVER
Sub Area Name of th								
	ar Dredge	Gei	ar Area		0.8382			
Bar Type Nat	•							
Planting Seed (Year)	P	lanting D	SH (Yea	ar)		Planting	FSH (Yea	ar)
Temperature (C)	22.7 Salinity (pp	ot)	19.8	Depth (fl	0	15 Tow Dis	stance (ft) 107
Volume (bushels)	0.6 2.1 bushels = Fu	l dredge	Sul	Samp	le Volum	e 1/5 MD Bu	ishel	
		Market					4.14	ength (mm)
Numbe	r of Live Ovsters	Market	Small	Spat 44	Total 50		٠	
Number of Dead Oysters Recent Box					00			
		0	0	0				
	Old Box All Boxes	0	6	2	8			
	14 00100	U						
0	bserved Mortality			4.35	13.79			
	Average Size		37.00	20.00				
Latitude Degrees	38 mm.mmm	3.2	7 Deci	mal De	grees	38.0	545	
Longitude Degrees	75 mm.mmm	51.36	2 Deci	mal De	grees	-75.8560333333	333	
Check if a sample	was taken for dise	ase testir	NG I					
Comments								
oominicities								

– Oyster Data Tool

 Chesspeake Bay Oyster Reporting Cool
 Image: Image
Image: Imag

First steps towards expedited and integrated data delivery

- COD: Integration of geo-referenced oyster data enables spatial visualization of all facets of oyster management
 - Managers can pull up information on disease, harvest, restoration, and mortality for a given bar at the click of a mouse.
- Oyster Data Tool: Integration of geo-referenced oyster data with other water quality /physico-chemical and habitat data facilitates making connections between water quality, habitat, and living resources.
 - Facilitates science-grounding of ecosystem-based management, with at-a-glance environmental info.
 - Facilitates research and understanding. Scientists and managers will be able to spend more time on analysis and modeling and less time on searching for data and integrating it.

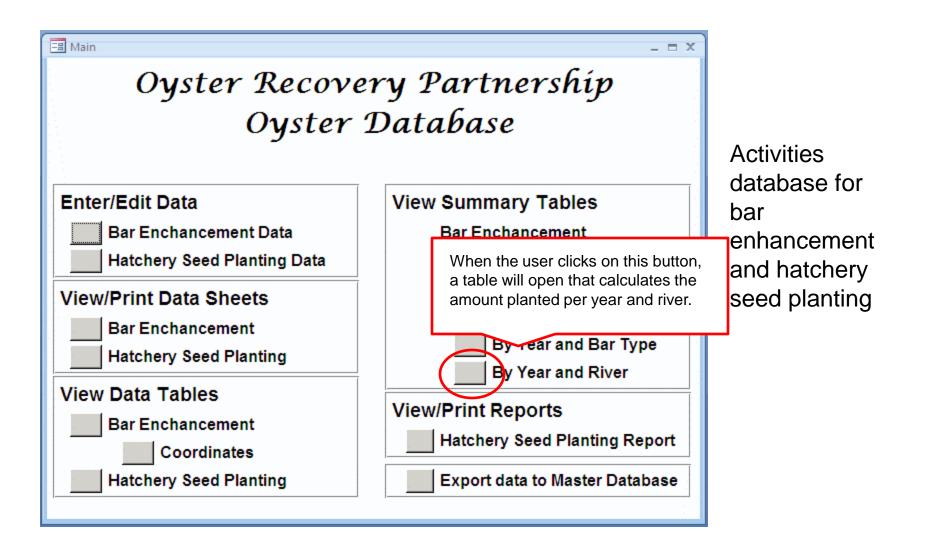
Comprehensive Chesapeake Oyster Database (COD)

- Maryland DNR, and Virginia MRC, to develop improved methods for entering and integrating all facets of oyster data
 - Including harvest, disease, survey and restoration
- Data can be more rapidly QA/QC'ed and reports easily generated

-B Main	- = ;						
Maryland Department of Natural Resources							
Oyster Harvest Database							
Enter Shelfish Buy Ticket Data Enter Monthly Oyster Landings Data	Total Harvest By Year and By Month By NOAA Code						
Search for Oyster Bar Names Search for Watermen Search for Oyster Buyers	By River System By Bar By Watermen By Watermen and Month By Waterman License Type						
QAQC Data Entry View All Data in Table Format	By Gear Type By Buyer						
Export Data to Master Database							

	/16/2008					Bar ID	BARBA0
Bar Name BIG ANNEMESSEX		-	Bar	Region	BIG ANNEMESS	EX RIVE	R
Sub Area Name of the Bar							
Replicate 1 Gear Dredge	Ge	ar Area		0.8382			
Bar Type Nat 💽							
Planting Seed (Year)	Planting D	ISH (Yea	ar)		Planting FSI	H (Year)	
Temperature (C) 22.7 Salinity (p	opt)	19.8 D	Depth (f)	15 Tow Distar	nce (ft)	107
/olume (bushels) 0.6 2.1 bushels = F	ull dredge	Sut	Samp	e Volum	e 1/5 MD Bush	el	
	Market	Small	Cont	Total		Leng	th (mm) 🔹
Number of Live Ovsters	0	Smail 6	Spat 44	50		*	
Number of Dead Ovsters Recent Box	0	0	0	50			
Old Box	0	6	2				
All Boxes	0	6	2	8			
Observed Mortality	_	50.00	4.35	13.79			
Average Size		37.00		10.70			
, werdige office		01.00	20.00				
atitude Degrees 38 mm.mmm	3.2	27 Deci	mal De	grees	38.0545		
ongitude Degrees 75 mm.mmm	51.36	32 Deci	mal De	grees	-75.8560333333333		
Check if a sample was taken for dis	ease testi	ng					
Comments							

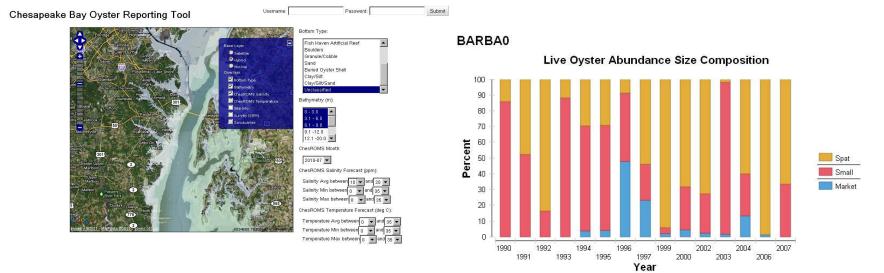
ġ.	HSPSummary	WRiver					
	Year 🔹	River •	Area Planted (Acres) 🔹	New Area Planted (Acres) +	# Spat Planted (millions) +	# Tanks +	Bushels of Shell Planted +
	2009	EASTERN BAY NORTH	33.0166102077	9.39	42.72	27	4320
	2009	HONGA RIVER	13.35317294854	11.11767080964	20.66	18	2880
	2009	HOOPER STRAITS	15.4412663812	8.22752172825	34.47	14	2240
	2009	LOWER ANNE ARUNDEL SI	16.19660860754	8.12725582101	28.34	13	2080
	2009	LOWER CHESTER RIVER	60.31075581731	20.68135481923	124.12	62	9920
	2009	MAGOTHY RIVER	3.664362229487	0	4.33	4	640
	2009	MANOKIN RIVER	7.63509337823	7.63509337823	10.24	7	1120
	2009	MIDDLE CHOPTANK RIVER	85.57704538783	64.33129973746	105.37	67	10720
	2009	NANTICOKE AND WICOMI	9.92466597949	9.92466597949	19.81	7	1120
	2009	SEVERN RIVER	4.80708032982	4.80708032982	18.17	9	1440
	2009	SOUTH RIVER	3.67842271513	2.28	3.33	3	480
	2009	TRED AVON RIVER	6.91895799954	6.91895799954	14.07	8	1280
	2009	UPPER CHESTER RIVER	26.66108299703	6.8	45.94	23	3680
	2009	UPPER CHOPTANK RIVER	66.96456966688	18.759058398	119.25	76	12160
	2009	UPPER PATUXENT RIVER	23.6309920262	14.7171596953	34.86	23	3680
	2009	WICOMICO RIVER	3.99289960366	2.98	19.5	9	1440
Re	cord: M - (1	of 16 🕨 🖬 🕫 🐇 No Filte	er Search				


COD- Facilitates Data Entry

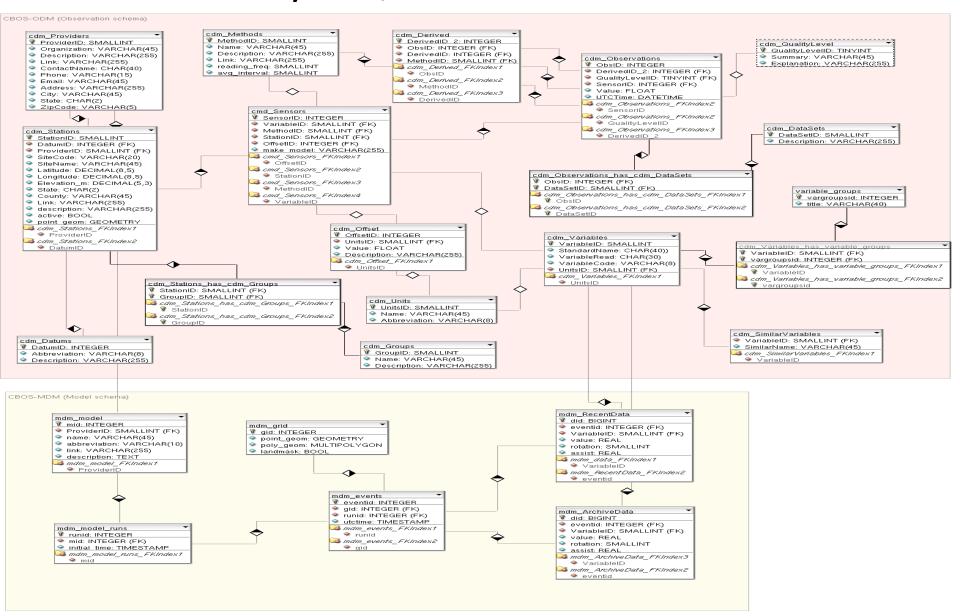
COD- Facilitates Data Entry

HSPDataEntry		_ = X
Maryland Oyster Restora	ition - Hatchery Seed Planting Data Sheet	Next Record
Date Data Logger		Previous Record
Bar Name		First Record
	Vessel	Last Record
Lead Organization	Crew	
Funding Organization	Other Groups Involved	Add New Record
Bottom Type Depthfeet	Depa	s rt Dock Planting
Water Quality Temp Salinity DO		Planting
Surface		
Bottom		
	Hatchery Name Broodstock	
	Were the Spat Grown Out in a Nursey Prior to Planting?	n Shell?
Report Filename	fotal # Spat millions bushels cubic yards	
Other Filename	Average Spat Size (mm) Average # of Spat per Shell	
Comments	Tank 👻 Avg Spat Size (mm) 👻 # Spat (millions) 👻 Avg # Spat per Shell	▼
Map Picture File Name	Map Saved on Computer (Path Name)	
Record: I 162 of 162 H H Record: Search		

COD- Facilitates Reporting


COD- Facilitates Reporting

ĺ	Year 👻	River -	Area Planted (Acres) 👻	New Area Planted (Acres) 👻	# Spat Planted (millions) 👻	# Tanks 👻	Bushels of Shell Planted 🔹
	2009	EASTERN BAY NORTH	33.0166102077	9.39	42.72	27	4320
	2009	HONGA RIVER	13.35317294854	11.11767080964	20.66	18	2880
	2009	HOOPER STRAITS	15.4412663812	8.22752172825	34.47	14	224
	2009	LOWER ANNE ARUNDEL SH	16.19660860754	8.12725582101	28.34	13	208
	2009	LOWER CHESTER RIVER	60.31075581731	20.68135481923	124.12	62	992
	2009	MAGOTHY RIVER	3.664362229487	0	4.33	4	64
	2009	MANOKIN RIVER	7.63509337823	7.63509337823	10.24	7	112
	2009	MIDDLE CHOPTANK RIVER	85.57704538783	64.33129973746	105.37	67	1072
	2009	NANTICOKE AND WICOMI	9.92466597949	9.92466597949	19.81	7	112
	2009	SEVERN RIVER	4.80708032982	4.80708032982	18.17	9	144
	2009	SOUTH RIVER	3.67842271513	2.28	3.33	3	48
	2009	TRED AVON RIVER	6.91895799954	6.91895799954	14.07	8	128
	2009	UPPER CHESTER RIVER	26.66108299703	6.8	45.94	23	368
	2009	UPPER CHOPTANK RIVER	66.96456966688	18.759058398	119.25	76	1216
	2009	UPPER PATUXENT RIVER	23.6309920262	14.7171596953	34.86	23	368
	2009	WICOMICO RIVER	3.99289960366	2.98	19.5	9	144


Example of a summary table created from database calculating total area planted and number of spat planted. This can be pasted into a report or excel table, or imported into an analysis program like SAS or R. As more data is entered into the database, this table will be automatically updated.

Chesapeake Bay Ecosystem Integrated Information System (CBEIIS) – Oyster Data Tool


- Working with Versar, NCBO has developed methods for integrating oyster data (and other living resource data) with water quality (physicochemical data) and displaying data on maps and generating reports. All this can be done from a web browser.
 - For example, the system allows temperature, salinity, and bathymetry data to be overlaid on a map with restoration and disease data. This will help make decision on where to invest restoration funds

Oyster Data Tool – Connects to Lots of Physical/Observations Data

Pitfalls and peaks for developing Integrated IS

