Chesapeake Bay Oyster Restoration: The USACE Perspective- Past, Present, and Future

Angie Sowers, Ph.D. USACE- Baltimore August 3, 2011

US Army Corps of Engineers BUILDING STRONG_®

Presentation Outline

USACE's Oyster Restoration Program

- Authority
- Program History
- Lessons Learned and Observations
- Native Oyster Restoration Master Plan
 - Purpose
 - Key Technical Issues Addressed
 - Plan Formulation

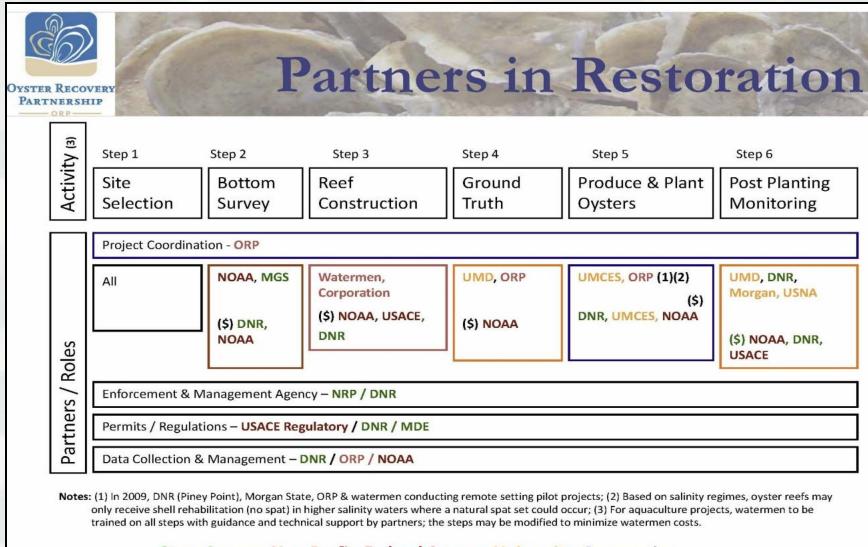
Future of the USACE Oyster Restoration Program

USACE Oyster Restoration Program

- Program was established in Section 704(b) of the Water Resources Development Act of 1986
 - "...the construction of a reef for fish habitat in the Chesapeake Bay in Maryland"
 - ► Established project cost-sharing as 75% Federal, 25% non-Federal
 - Project construction up to \$5 million Federal
- Amended in 1996, 2000, 2002, 2006, and 2007
 - Added Virginia to project location
 - Increased authorization limit to \$50 million
 - Identifies specific type of construction activities (hatcheries, use of alternative substrate, etc.)
 - Purpose of restoration = establishing sanctuaries and harvest management areas
 - USACE activities to be consistent with other plans and strategies

USACE Oyster Restoration Program History

- FY1995 First year of funding
- May 1996 Technical report completed
- Construction summary, 1997-2010, for MD:
 - ► 450 acres of substrate placed
 - Locations: Magothy, Severn, and Patuxent Rivers Chester and Choptank Rivers, Eastern Bay Kedges Strait
 - Material used: Dredged fossil shell,1997-2006 Alternative substrate, 2009-2010
 - Periodic project monitoring
- Construction summary, 2001-2010, for VA:
 - 389 acres of substrate (dredged fossil shell) placed
 - Locations: Tangier and Pocomoke Sounds Great Wicomico and Lynnhaven Rivers

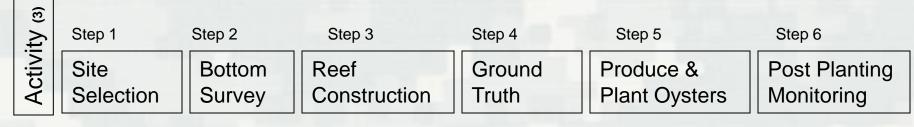

Restoration Focus

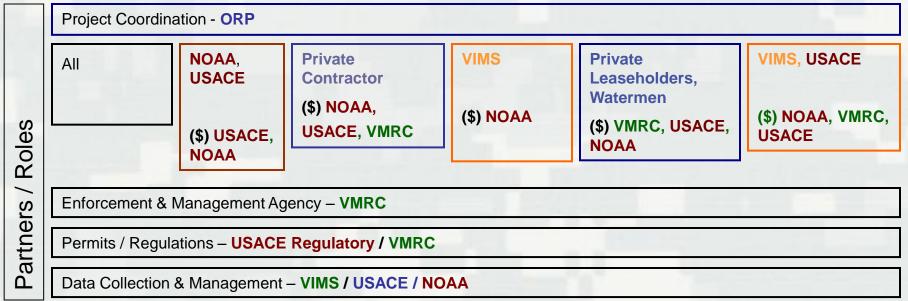
Baltimore District

Restoration Type	Acres
Sanctuary (1999-2009)	202 (45%)
Fishery-oriented	249 (55%)
Unofficial Reserve (1997-2001)	29
Harvest Reserve (2002-2006)	152
Seed Bar (1997-1999)	68
TOTAL	451

Norfolk District

Restoration Type	Acres
Sanctuary (1999-2009)	149 (38%)
Fishery-oriented	240 (62%)
TOTAL	389


State Agency, Non-Profit, Federal Agency, University, Corporation



Oyster Recovery Partnership

Partners in Restoration

Notes: (1) Private individuals/companies have provided spat-on-shell for USACE projects; (2) Private leaseholders shell their leased areas, then sell wild spat-on-shell to Virginia for USACE projects.

State Agency, Non-Profit, Federal Agency, University, Corporation

<u>Lessons Learned and Important</u> <u>Observations- Restoration</u>

- Hatchery production has been developed substantially
- Illegal harvesting (poaching) is a critical threat-believed to have occurred on all MD restored sanctuaries
- Scale: past restoration efforts have been too small and scattered
 - ecosystem restoration efforts have focused on approximately 1% of Baylor grounds (VA) and 1.6% of Yates bars (MD) (ORET 2009)
 - past efforts insufficient to impact system\
- Restored reefs create a unique and ecologically valuable reef structure used by a diverse group of organisms (Rodney and Paynter 2006)

Lessons Learned and Observations-Construction and Design

- Early coordination of sites needed
 - Other fishery uses reduce potential restoration areas
- Spat planting density
 - ► High mortality (~50%) during first year
- Bar height is important to success
- Sedimentation rates are highly variable spatially
- Local infection levels drive disease
 - Bar cleaning to minimize disease showed limited value
 - Use disease free spat-on-shell; do not transplant wild oysters to low disease from high disease areas
- Predation is a concern in high salinity waters
- DO: limit construction to < 20 ft water depth
 - suspected cause of low growth and mortality in certain areas

Native Oyster Restoration Master Plan

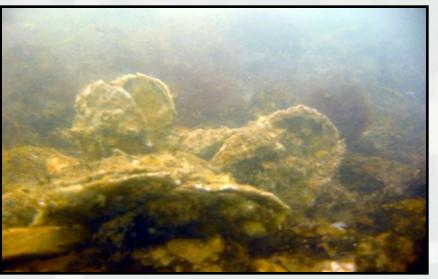
Goal:

- Long-term restoration goal: Throughout the Chesapeake Bay, restore an abundant, self-sustaining oyster population that performs important ecological functions such as providing reef community habitat, nutrient cycling, spatial connectivity, and water filtration, among others, and contributes to an oyster fishery.
- Operational: Identify tributaries/regions most likely to develop sustainable populations of oysters with the implementation of reef construction, seeding, and other oyster restoration activities.

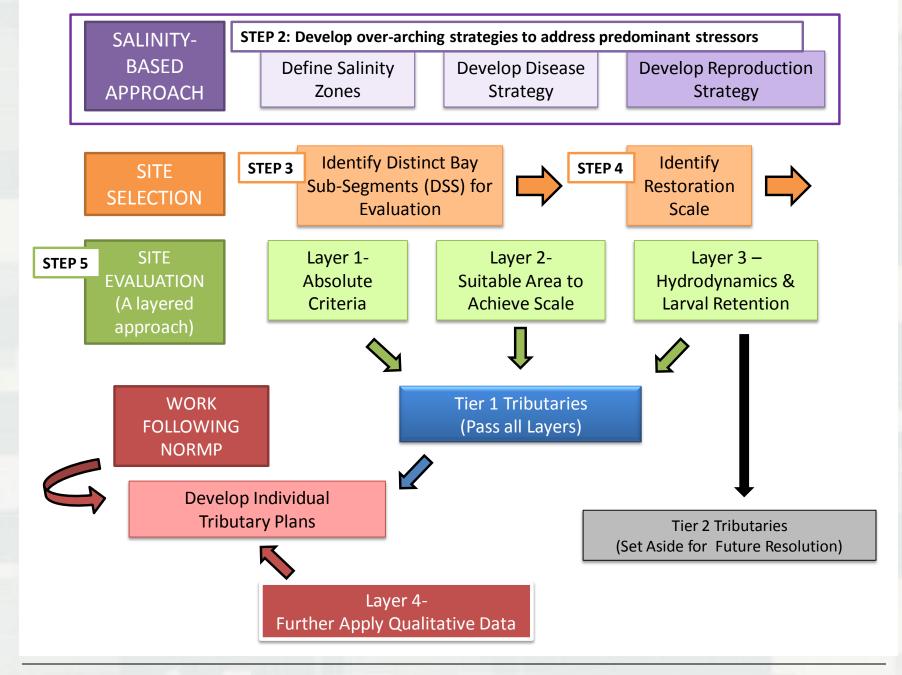
Purpose

- The master plan will ensure that oyster restoration implemented by USACE is conducted in a logical, science-based, and cost-effective manner with the greatest potential for success in achieving the restoration goal.
- The master plan will present a strategic plan for pursuing long-term, wide-scale restoration throughout the Bay that complements the States' oyster restoration programs as well as other Bay-wide restoration efforts and future uses of the Chesapeake Bay.
- It will not define specific projects for specific locations.

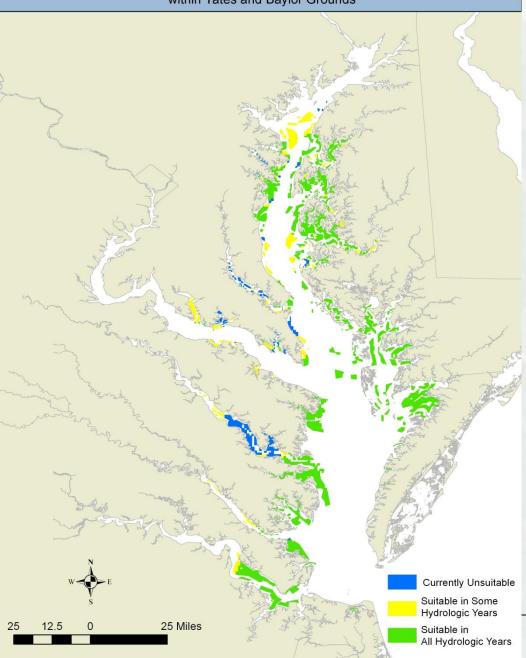
Plan Formulation


<u>Answers Question</u>: "Where (and at what scale) can restoration be accomplished considering physical and biological constraints, and what is the comparative effectiveness of each tributary to retain oyster larvae and become self-sustaining?"

- 1. Develop Formulation White Papers
- 2. Adopt salinity-zone, disease, and reproduction strategies
- 3. Identify distinct sub-segments of the Bay for evaluation and prioritization
- 4. Determine the appropriate scale at which restoration should be undertaken
- 5. Site evaluation and prioritization:
 - A layered formulation evaluation
 - Identify Tier I and II Bay segments


<u>#1 Develop White Papers:</u> Key Technical Issues Addressed

- Scale
- Disease
- Populations bayscape setting
- Populations individual reefs
- Physiochemical factors
- Hydrodynamics
- Reproduction



Significance to Oyster Restoration and Master Plan Scientific Basis and State of Knowledge Application to the Master Plan

Data Layers Evaluated: Mean Bottom X Surface Salinity, Bottom DO in Wet, Average, and Dry Hydrologic Years, and Water Depth within Yates and Baylor Grounds

Suitability Analysis Results

- Salinity
 - Surface
 - Bottom
- Bottom DO
- Water depth
- Yates/Baylor Grounds
- Total VA suitable area = 122,000 acres
- Total MD suitable area = 228,000 acres

What is the Future of USACE Program?

- Work with NOAA and other agencies on action plan for E.O. 13508 and specific tributary plans
- Incorporate external peer review into future USACE oyster restoration decision documents
- Analyze the environmental benefits of rotational harvest areas as well as the commercial benefits of sanctuaries
- For now, continue construction and monitoring as in the past
- Continue discussions to gain buy-in from partners so that shared resources can be used effectively
- Once master plan is approved, ecosystem restoration focus will be on tributary scale restoration
 - Expect each tributary restoration to take several years given restoration target
 - Sanctuary designations will need to be in place
 - Incorporate proactive adaptive management

THANK YOU FROM THE USACE MASTER PLAN TEAM

Claire O'Neill Larry Oliver Anna Compton Jeff Strahan

Jen Armstrong Susan Conner Dave Schulte Angie Sowers

(Craig Seltzer- retired)

NORMP Plan Formulation

<u>Answers Question</u>: "Where (and at what scale) can restoration be accomplished considering physical and biological constraints, and what is the comparative effectiveness of each tributary to retain oyster larvae and become self-sustaining?"

- 1. Develop Formulation White Papers
- 2. Adopt salinity-zone, disease, and reproduction strategies
- 3. Identify distinct sub-segments of the Bay for evaluation and prioritization
- 4. Determine the appropriate scale at which restoration should be undertaken
- 5. Site evaluation and prioritization:
 - A layered formulation evaluation
 - Identify Tier I and II Bay segments

EXTRA SLIDES- IF NEEDED DURING QUESTIONS

NORMP- Salinity Zone Strategy

OMP Salinity Zones (CBP 2004a)

	Low (1)	Moderate (2)	High (3)
Salinity (ppt)	5 to 12	12 to 14	>14
Disease	Low	Moderate	High
Pressure			
Survival	Good	Moderate	Poor
Recruitment	Poor	Moderate	Good
Master Plan Salinity Zones			
Salinity (ppt)	Zone 1	Zone 2	
	5 to 12	>12	

Due to scale of analysis and variability of salinity over timescales, combined three zones into two zones for analysis

Plans will take into consideration that >8 ppt is needed for reproduction, but >5 ppt supports growth

Disease Strategy

- A network of permanent sanctuaries spanning salinity zones to develop population-level disease resistance (long-term)
- Focus initial efforts in retentive systems (trap estuaries where possible) to concentrate and magnify larval production
- Avoid domesticated oyster strains such as DEBY and CROSSBred for stock enhancement
- Use a rotating broodstock approach for hatchery production
- Plant sites with spat from disease-resistant parent stock either from hatcheries or obtained from the wild population

Disease Strategy (con't)

- Incorporate adult wild oyster broodstock that have survived disease into plantings
- Restrict movement of wild broodstock and spat-on-shell to areas with a similar or higher salinity regime
- Use "incubator reefs" (trap estuaries) to provide a seed source for restoration work
 - Transplant spat-on-shell produced on incubator reefs to restoration sites within the same or greater salinity

Reproduction Strategy

- Low to moderate salinity zones (<12 ppt salinity) low and intermittent recruitment events, often separated by many years
 - Provide substrate as needed
 - Substrate should be stocked immediately following planting to avoid degradation
 - Monitor (pre- and post-construction) to assess natural recruitment, population, and condition, to determine the need for additional stocking
 - Monitor and, as needed, restock at same rate, 2 to 3 years following initial planting to provide a multi-age population

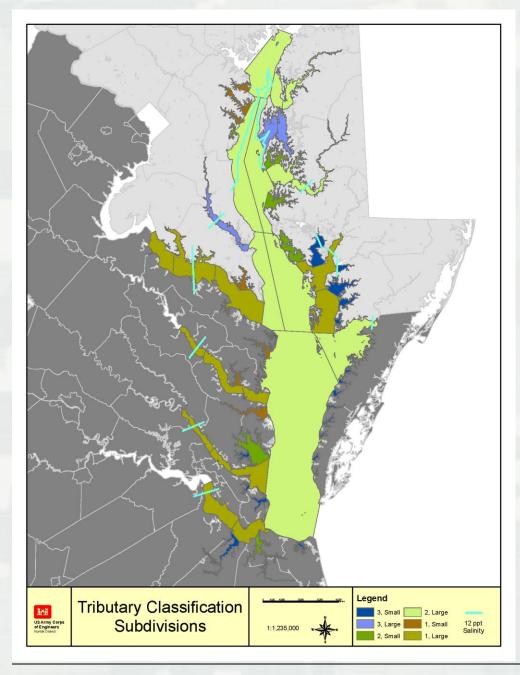
Reproduction Strategy (con't)

- High salinity zones (>12 ppt salinity) higher, more consistent spat sets
 - Provide substrate as needed; where natural recruitment is sufficient, may not need seeding
 - Plant substrate immediately prior to spawning season
 - Stock and aggregate large natural oysters harvested from areas with demonstrated disease tolerance to enhance fertilization success
 - Monitor (pre- and post-construction) to assess natural recruitment, population, and condition, to determine the need for additional stocking
 - Where natural recruitment is not occurring and substrate degradation is occurring, consider adding new material and/or restocking

NORMP Plan Formulation – Stocking

Stocking rate by salinity zone

- Salinity influences fecundity and recruitment
 - Some high salinity reefs may not require stocking
 - Low salinity reefs projected to require multiple stocking events to establish multi-age population with male and females
 - Recommended planting density- 4 to 5 million spat per acre
- Estimate the need to stock all low salinity reefs and 50% of high salinity reefs
- Climatic events (freshets and droughts) may affect the frequency of restocking, which would affect cost



NORMP Plan Formulation

<u>Answers Question</u>: "Where (and at what scale) can restoration be accomplished considering physical and biological constraints, and what is the comparative effectiveness of each tributary to retain oyster larvae and become self-sustaining?"

- 1. Develop Formulation White Papers
- 2. Adopt salinity-zone, disease, and reproduction strategies
- 3. Identify distinct sub-segments of the Bay for evaluation and prioritization
- 4. Determine the appropriate scale at which restoration should be undertaken
- 5. Site evaluation and prioritization:
 - A layered formulation evaluation
 - Identify Tier I and II Bay segments

Distinct Sub-Segment Delineations

VA- 29 segments MD- 34 segments

NORMP Plan Formulation

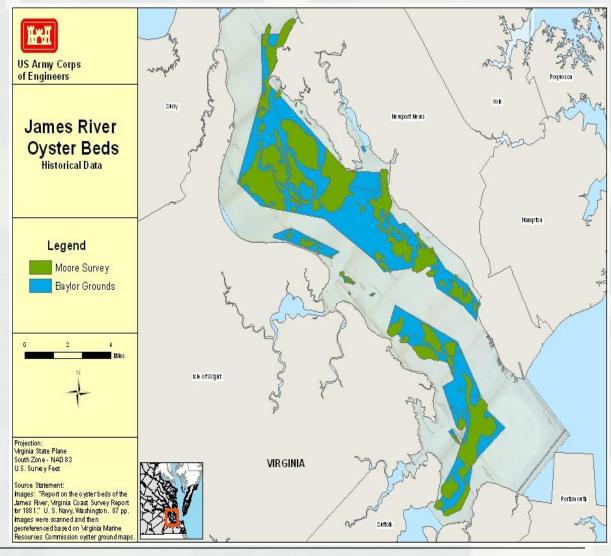
<u>Answers Question</u>: "Where (and at what scale) can restoration be accomplished considering physical and biological constraints, and what is the comparative effectiveness of each tributary to retain oyster larvae and become self-sustaining?"

- 1. Develop Formulation White Papers
- 2. Adopt salinity-zone, disease, and reproduction strategies
- 3. Identify distinct sub-segments of the Bay for evaluation and prioritization
- 4. Determine the appropriate scale at which restoration should be undertaken
- 5. Site evaluation and prioritization:
 - A layered formulation evaluation
 - Identify Tier I and II Bay segments

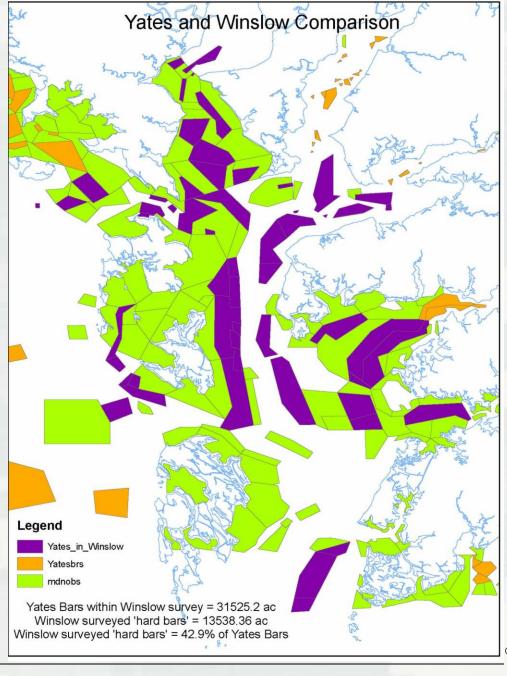
NORMP – Scale Issue

- Scale for the master plan is defined as the approximate number of acres of habitat in a given distinct subsegment required to develop a self-sustaining oyster population.
 - How do we do this?
 - Step 1- Define historic habitat baseline
 - Step 2- Identify what percent of historic habitat needs to be restored to achieve goals

Scale- What do we know?


- Baylor (1894) and Yates (1906-1911) the most comprehensive surveys of oyster grounds in VA and MD, respectively
- Based on ORET (2009), ecosystem restoration efforts have focused on approximately 1% of Baylor grounds (VA) and 1.6% of Yates bars (MD)
- Marine protected areas (MPA) typically protect 20 to 70% of habitat
- There are various descriptive accounts of historic oyster bar coverage, but no investigations into what acreage needs to be restored to recover sustainability
- Great Wicomico River project has restored approximately 40% of the original reef acreage in the tributary

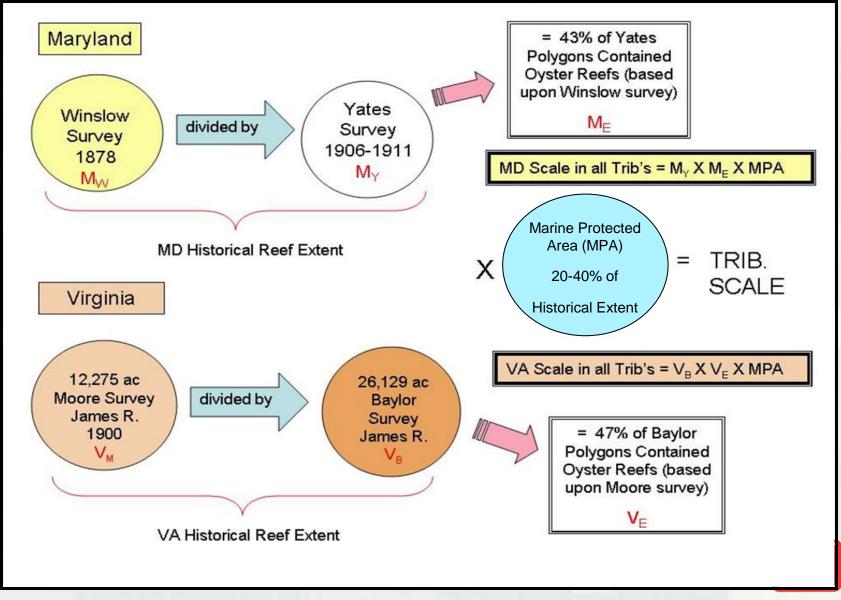
Scale- Step 1: Historic Baseline


•Determine how much of 'historic' acreage was true oyster habitat.

•By comparing Baylor to Moore (1900) only 47% of the Baylor grounds contained oyster habitat

<u>Scale</u>

•By comparing Yates to Winslow (1881) only 43% of the Baylor grounds contained oyster habitat


Scale- Step 2: Identify restoration target

► No definitive information available

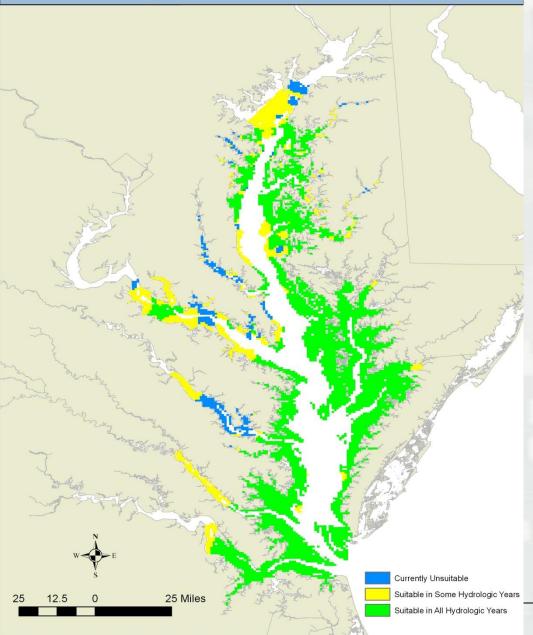
- A reasonable estimate is required to identify the relative scope and costs of the master plan:
 - Marine protected areas typically range from 20 to 70%
 - Large-scale sanctuaries will be needed
 - Great Wicomico only current example still thriving after 6 years
- Restoration goal = 20-40% of historic (corrected) habitat
 - Percentage is expected to vary in specific tributary plans
 - Historic reef extent is considered prior to application of 20-40%
 - Larger-scale reefs may be needed in lower salinity waters
 - Historic (corrected) habitat multiplied by 20-40% = restoration target = 8-16% of Yates/Baylor Grounds

Scale- Calculation Summary

NORMP Plan Formulation

<u>Answers Question</u>: "Where (and at what scale) can restoration be accomplished considering physical and biological constraints, and what is the comparative effectiveness of each tributary to retain oyster larvae and become self-sustaining?"

- 1. Develop Formulation White Papers
- 2. Adopt salinity-zone, disease, and reproduction strategies
- 3. Identify distinct sub-segments of the Bay for evaluation and prioritization
- 4. Determine the appropriate scale at which restoration should be undertaken
- 5. Tributary evaluation and prioritization:
 - A layered formulation evaluation
 - Identify Tier I and II Bay segments


- Layer 1 Evaluate the <u>absolute criteria</u> to determine which areas are capable of sustaining oyster populations
- Layer 2 Determine if a distinct sub-segment (or tributary) has enough suitable area to achieve stated restoration goals (scale)
- Layer 3 Evaluate <u>hydrodynamics</u> criteria (secondary criteria)
- Layer 4 Consider qualitative data (tertiary criteria)

- Layer 1: Absolute criteria
 - ► Salinity >5 ppt
 - Average growing season (surface and bottom)
 - ► Average summer dissolved oxygen (DO) ≥5 mg/L
 - Reflects habitat quality and oyster survival
 - ► Water depth <20 feet</p>
 - Historic upstream limit of oyster reefs
- GIS used to overlay data layers
- Considered wet (2003-2004), dry (2001-2002), and average rainfall years (2005-2006).
- Point data were gathered from the MDNR, MDE, Alliance for Chesapeake Bay, Virginia Department of Health/Division of Shellfish Sanitation, and the CBP.

Data Layers Evaluated: Mean Bottom X Surface Salinity and Bottom DO in Wet, Average, and Dry Hydrologic Years

Suitability Analysis Results

- Salinity
 - Surface
 - Bottom
- Bottom DO
- Water depth
- Total VA suitable area
- = 580,000 acres
- Total MD suitable area= 518,000

Layer 2: Scale

Is there enough suitable area within the distinct sub-segment (or tributary) to meet the estimated restoration target?

Layer 3: Hydrodynamics

- ► Approach:
 - No comprehensive evaluation of hydrodynamics across the Chesapeake Bay
 - > Approach- determine a qualitative hydrodynamic rating for each distinct sub-segment or tributary
- Hydrodynamics issues addressed
 - Recognize importance of both retention and recruitment in re-establishing the oyster population
 - Factor recruitment into the hydrodynamic evaluation
 - Consider historic recruitment and salinity zone

- Hydrodynamic rating (qualitative) based on documented retention as well as modeling
 - Documented:
 - Scientific literature
 - Best bar identification by Maryland Department of Natural Resources
 - Historic spatset data
 - Current restoration activities

► Modeled:

- Larval transport modeling self-recruitment metric of large tributaries
- Larval transport modeling self-recruitment of sub-basins
- Small tributary flushing time and geomorphology
- Larval transport modeling particle accumulation zones

Layer 4: Qualitative data (Tertiary criteria)

Criteria To Be Further Considered During Development of Specific Tributary Plans		
Physiochemical	freshets, local water quality (DO, salinity, temperature)	
Physical	bottom that can support oysters; water flow; sedimentation	
Biological	phytoplankton resources; harmful algal blooms; proximity, position, and quantity of existing broodstock populations	
Regulatory	harvesting closure areas; sanctuary locations	
Miscellaneous Considerations	watershed suitability; position relative to other estuarine habitats	

NORMP vs. Other Recent Plans

- Consistency with other current plans
 - Overall NORMP goal consistent with other oyster plans
 - Plans considered:
 - Chesapeake Bay Program's 2004 Oyster Management Plan
 - Virginia Blue Ribbon Panel, 2007
 - Chesapeake Bay Action Plan
 - Maryland Oyster Advisory Commission, 2009
 - Executive Order 13508, "Strategy for Protecting and Restoring the Chesapeake Bay Watershed," May 2009
 - Maryland Oyster Restoration and Aquaculture Development Plan, December 2009
 - Final Programmatic EIS for Oyster Restoration in Chesapeake Bay, June 2009

