Role of Ecosystem Services in Watershed Management

Steve Gruber
Dennis King
David Moore

Los Peñasquitos Lagoon

Ecosystem Services within the Regulatory Framework

- Impairment Identified
- Sedimentation of the lagoon
- Ecosystem Services Lost - Loss of Saltwater Marsh
- Regulatory Driver - TMDL
- Quantify Waste Load Allocations
- Identify Numeric Targets
- Implementation Plan for Restoration Blueprint
- Meet Waste Load Allocations
- Restore Beneficial Uses of the Lagoon
- Ecosystem Services to Prioritize Restoration Alternatives

National Wetland Inventory - 2009

Ecosystem Services Lost

- Wildlife habitat
- Endangered species protection
- Recreational uses (hiking, birding, boating)
- Fisheries (shellfish harvesting)
- Aesthetic value
- Education \& research
- Flood protection

Los Peñasquitos Lagoon Sediment/Siltation TMDL

$$
\mathrm{TMDL}=\sum \mathrm{WLAs}+\sum \mathrm{LAs}+\mathrm{MOS}
$$

Source	Current Load (tons)	Historical Load (tons)	Load Reduction (tons)	Percent Reduction Required
TMDL	13,663	12,360	1,303	10%
Watershed Contribution (WLA)	7,719	2,580	5,139	67%
Ocean boundary (LA)	5,944	9,780	$+3,836$ (increase)	$+39 \%$ (increase)

Numerous Stakeholders

Increasing Population in the Watershed

San Diego Regional Population (SANDAG)

Increasing Urbanization Leads to Larger Flows

Los Penasquitos Creek (USGS Gage 11023340) 1964-2000 Monthly Flow

Streambank Erosion

Regulatory Process

$$
\begin{aligned}
& \text { USEPA } \longrightarrow \text { SWRCB } \longrightarrow \text { RWQCB } \longrightarrow \text { Stakeholders } \\
& \text { (CWA) } \\
& \text { 303(d) } \\
& \text { TMDL } \\
& \text { Third Party } \\
& \text { TMDL } \\
& 1996 \quad 2006 \quad \text { 2007-2011 }
\end{aligned}
$$

\longrightarrow| Plan |
| :---: |
| $2011-2012$ |\(\underset{\substack{Goals \&

Numeric}}{WLA} \longrightarrow\)| Lagoon |
| :---: |
| Restoration |

Ecosystem Services:

- Are the beneficial outcomes of ecosystem functions
- Include such things as clean air and water, flood control, various active and passive use values, and aesthetic and other "non-use values"
- Are often taken for granted as free
- Are often left out of important decisions

Building Blocks of Ecosystem Services \& Values

Flow of Information

About Ecosystem Services

Key Questions

- What features of ecosystems support functions that generate valuable ecosystem services?
- What changes \& trends in features \& functions are affecting ecosystem services?
- What policies \& investments will favorably affect these changes \& trends?
- How much will those policies \& investments cost?
- How should we decide among restoration alternatives?

Cost-Effectiveness/

Incremental Cost Analysis

- Cost Effectiveness Analysis
- Is used to ensure that the least cost alternative is identified for each possible level of output (e.g., production of ecosystem services)
- Incremental Cost Analysis
- Reveals the additional cost of achieving increasing output
- Presents tradeoffs for policy makers to determine whether the increase in output is worth the additional cost

Hlustration: Cost-Effectiveness Analysis

Plan	Total Cost	Ecosystem Services
No-action	$\$ 0$	0
Plan A	$\$ 20,000$	40
Plan B	$\$ 10,000$	40
Plan C	$\$ 15,000$	45
Plan D	$\$ 15,000$	55
Plan E	$\$ 42,000$	105
Plan F	$\$ 40,000$	110

Plans are sorted in order of increasing output

Cost-Effectiveness Frontier

Incremental Cost Analysis

Plan	Cost	Output (Ecosystem Services)	Incremental Cost	Incremental Output	Incremental Cost per Unit Ecosystem Service(ES)
No-action	$\$ 0$	0	NA	NA	NA
Plan B	$\$ 10,000$	40	$\$ 10,000$	40	$\$ 250 / E S$
Plan D	$\$ 15,000$	55	$\$ 5,000$	15	$\$ 333 / E S$
Plan F	$\$ 40,000$	110	$\$ 25,000$	55	$\$ 455 / E S$

Only cost-effective plans are carried forward for Incremental Cost Analysis.

Decision-making Summary

- Identify, measure and, where necessary, rank and weight ecosystem services
- Identify outcome and cost thresholds
- Conduct cost effectiveness and incremental cost analysis
- Screen out clearly inferior alternatives
- Present tradeoffs for policy makers to consider when choosing among alternatives

Ecosystem Services within the Regulatory Framework

- Impairment Identified
- Sedimentation of the lagoon
- Ecosystem Services Lost - Loss of Saltwater Marsh
- Regulatory Driver - TMDL
- Quantify Waste Load Allocations
- Identify Numeric Targets
- Implementation Plan for Restoration Blueprint
- Meet Waste Load Allocations
- Restore Beneficial Uses of the Lagoon
- Ecosystem Services to Prioritize Restoration Alternatives

Questions?

