

Ecosystem Services within the Regulatory Framework

- Impairment Identified
 - Sedimentation of the lagoon
 - Ecosystem Services Lost Loss of Saltwater Marsh
- Regulatory Driver TMDL
 - Quantify Waste Load Allocations
 - Identify Numeric Targets
- Implementation Plan for Restoration Blueprint
 - Meet Waste Load Allocations
 - Restore Beneficial Uses of the Lagoon
 - Ecosystem Services to Prioritize Restoration Alternatives

National Wetland Inventory - 1985

National Wetland Inventory - 2009

Ecosystem Services Lost

- Wildlife habitat
- Endangered species protection
- Recreational uses (hiking, birding, boating)
- Fisheries (shellfish harvesting)
- Aesthetic value
- Education & research
- Flood protection

Los Peñasquitos Lagoon Sediment/Siltation TMDL

 $TMDL = \sum WLAs + \sum LAs + MOS$

	Current	Historical	Load	Percent
Source	Load	Load	Reduction	Reduction
	(tons)	(tons)	(tons)	Required
TMDL	13,663	12,360	1,303	10%
Watershed Contribution (WLA)	7,719	2,580	5,139	67%
Ocean boundary (LA)	5,944	9,780	+3,836 (increase)	+39% (increase)

Numerous Stakeholders

Increasing Population in the Watershed

Increasing Urbanization Leads to Larger Flows

Regulatory Process

$$\begin{array}{ccc} \text{USEPA} &\longrightarrow \text{SWRCB} &\longrightarrow \text{RWQCB} &\longrightarrow \text{Stakeholders} \\ \text{(CWA)} & 303\text{(d)} & \text{TMDL} & \text{Third Party} \\ & & \text{TMDL} & \\ \end{array}$$

→ Implementation → WLA → Lagoon Restoration

Plan Goals & Numeric Targets

2011-2012 Targets

Ecosystem Services:

- Are the beneficial outcomes of ecosystem functions
- Include such things as clean air and water, flood control, various active and passive use values, and aesthetic and other "non-use values"
- Are often taken for granted as free
- Are often left out of important decisions

Building Blocks of Ecosystem Services & Values

Features

• Saltwater Marsh

Functions

- Wildlife Habitat
- Flood Control

Services

- Endangered Species Protection
- Reduced Property Damage

Values

- Value of Endangered Species
- Property Damage Avoided

Flow of Information About Ecosystem Services

Decision-making

Information & Incentives

Investments to protect/
restore ecosystems

Change in Ecosystem Value

Change in Features and Functions

Applications of economic valuation methods

Changes in ecological production functions

Change in Ecosystem Services

Key Questions

- What features of ecosystems support functions that generate valuable ecosystem services?
- What changes & trends in features & functions are affecting ecosystem services?
- What policies & investments will favorably affect these changes & trends?
- How much will those policies & investments cost?
- How should we decide among restoration alternatives?

Cost-Effectiveness/ Incremental Cost Analysis

- Cost Effectiveness Analysis
 - Is used to ensure that the least cost alternative is identified for each possible level of output (e.g., production of ecosystem services)
- Incremental Cost Analysis
 - Reveals the additional cost of achieving increasing output
 - Presents tradeoffs for policy makers to determine whether the increase in output is worth the additional cost

Illustration: Cost-Effectiveness Analysis

Plan	Total Cost	Ecosystem Services	
No-action	\$0	0	
Plan A	\$20,000	40	
Plan B	\$10,000	40	
Plan C	\$15,000	45	
Plan D	\$15,000	55	
Plan E	\$42,000	105	
Plan F	\$40,000	110	

Plans are sorted in order of increasing output

Cost-Effectiveness Frontier

Incremental Cost Analysis

Plan	Cost	Output (Ecosystem Services)	Incremental Cost	Incremental Output	Incremental Cost per Unit Ecosystem Service (ES)
No-action	\$ 0	O	NA	NA	NA
Plan B	\$10,000	40	\$10,000	40	\$250/ES
Plan D	\$15,000	55	\$5,000	15	\$333/ES
Plan F	\$40,000	110	\$25,000	55	\$455/ES

Only cost-effective plans are carried forward for Incremental Cost Analysis.

Decision-making Summary

- Identify, measure and, where necessary, rank and weight ecosystem services
- Identify outcome and cost thresholds
- Conduct cost effectiveness and incremental cost analysis
- Screen out clearly inferior alternatives
- Present tradeoffs for policy makers to consider when choosing among alternatives

Ecosystem Services within the Regulatory Framework

- Impairment Identified
 - Sedimentation of the lagoon
 - Ecosystem Services Lost Loss of Saltwater Marsh
- Regulatory Driver TMDL
 - Quantify Waste Load Allocations
 - Identify Numeric Targets
- Implementation Plan for Restoration Blueprint
 - Meet Waste Load Allocations
 - Restore Beneficial Uses of the Lagoon
 - Ecosystem Services to Prioritize Restoration Alternatives

