
Restoration Options for Neotropical Migratory Birds: a Look Toward the Future

John Schmerfeld U.S. Fish and Wildlife Service James Saracco The Institute for Bird Populations

Dr. Jamie Rotenburg, UNCW

Outline

- NRDA overview
- NRDA and migratory birds
- Restoration framework
- Rationale for international off-site restoration
- Information needs & challenges
- Case study: South River, VA mercury contamination

Prothonotary Warbler, John Woodcock

NRDA overview

- Resolved hundreds of cases
- Collected hundreds of millions of dollars for natural resource compensation
- Protected hundreds of thousands of acres of wildlife habitat
- Restoration projects from
 - Alaska to Argentina
 - Florida to New Zealand

Marbled murrelet, USFWS

NRDA overview

- Trustee council makes restoration decisions (with public input)
- Nexus of restoration to the injury
- Preference for in-kind, in-place
- Species' life-history traits are vitally-relevant foci for restoration efforts

Sooty shearwater, USFWS

Types of Restoration

 Purchase & protect quality habitat

- Decrease (other causes of) mortality
- Return habitat to pre-damage conditions
- Enhance or restore quality of other existing habitat
- Reintroduction/restocking of populations

NRDA and Migratory Birds

 OPA projects – both on- and offsite restoration of waterbirds and shorebirds

Species	Location	Туре	Location
Sooty Shearwaters	New Zealand	predator ctl	2 CA oil spills
Ruddy Ducks	prairie potholes	habitat	MD oil spill
Common loons	Maine lakes	habitat	MA oil spill
Red Knots	Argentina/Chile	management	NJ oil spill
Razorbills	Gulf of Maine	predator ctl	VA oil spill
Brown Pelicans	Baja	habitat	CA oil spill
Ancient Murrelets	Canada	habitat	CA oil spill

NRDA and Migratory Birds

- CERCLA-related projects
- Neotropical migratory songbirds
- Injury incurred at CERCLA/ hazardous substance sites

- Populations may be limited by factors outside of CERCLA site
- Full restoration may require both on- and off-site projects that span international borders
- No historical examples of such a broad-scale approach

Framework for restoration

- Establish restoration objectives
- Identify scientific information needs
- Assemble available information; collect new data
- Identify restoration possibilities
 - local
 - off-site (international)
- Assess likelihood of successful implementation
- Implement restoration actions
- Monitoring, adaptive management

Framework for restoration

- Establish restoration objectives
- Identify scientific information needs
- Assemble available information; collect new data
- Identify restoration possibilities
 - local
 - off-site (international)
- Assess likelihood of successful implementation
- Implement restoration actions
- Follow-up monitoring, adaptive management

Rationale for international restoration

- Many bird species that breed in the US spend ~ 2/3 of the year south of the border
- Populations are affected by conditions experienced throughout the life cycle
- Winter conditions can be especially important
- Restoration of wintering habitat can improve success of on-site restoration efforts
- Cost/benefit (\$) ratio is greater in Neotropics

Restoration objectives

- Target species, habitats
- Identify reasonable restoration types for target species and habitats
- Need to consider full life cycle
 - International projects for long-distance migrants
- Establish measures of success (abundance of target species, survival rates, productivity, diversity, etc.)

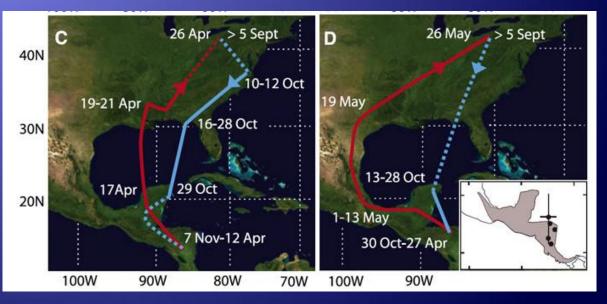
Scientific information needs

- Assess migratory connectivity
- Assess population parameters:
 - Distribution (occupancy), abundance, vital rates
- Assess environmental drivers of populations
 - Habitat, climate

Satellite
 transmitters
 now providing
 detail for many
 large species

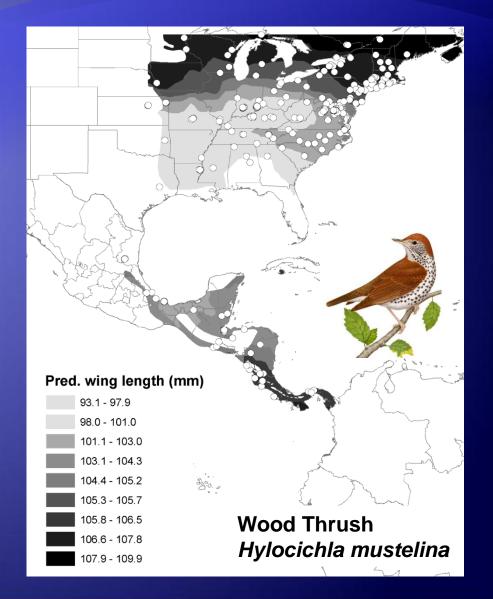
Bristle-thighed Curlew & Bar-tailed Godwit

Bob Gill, USGS Alaska Shorebird Project

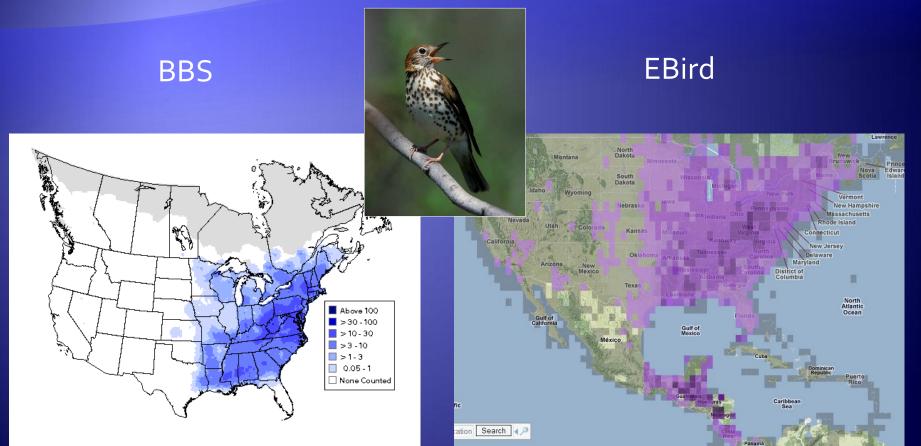

- More challenging for small species
 - Stable isotopes
 - Genetics
 - Geolocators
 - Morphometrics

from Kelly et al. 2005

- More challenging for small species
 - Stable isotopes
 - Genetics
 - Geolocators
 - Morphometrics

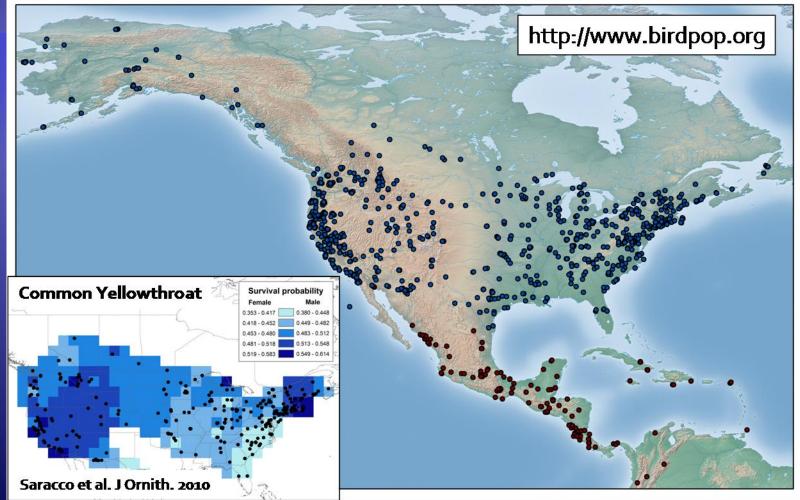

Wood Thrush *Hylocichla mustelina*

Stuchbury et al. 2009


- More challenging for small species
 - Stable isotopes
 - Genetics
 - Geolocators
 - Morphometrics

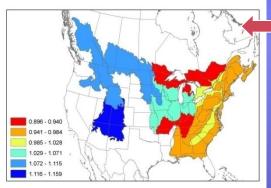
Scientific information needs

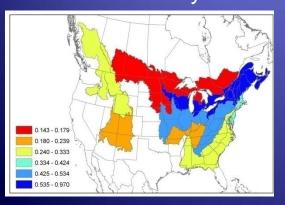
- Migratory connectivity
- Population parameters:
 - Distribution (occupancy), abundance, vital rates
- Environmental drivers of populations
 - Habitat, climate


Population parameters: distribution, abundance

http://www.pwrc.usgs.gov/bbs/results/

http://ebird.org/ebird/eBirdReports


Population parameters: vital rates Bird-banding data (MAPS, MoSI)


Population parameters: vital rates Bird-banding data (MAPS, MoSI)

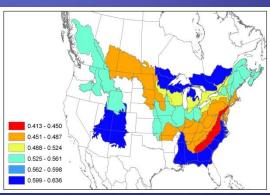
Adult survival

Population Trend

Productivity

Recruitment

0.261 - 0.320


0.321 - 0.380

0.381 - 0.440

0.441 - 0.500

0.501 - 0.560

0.561 - 0.619

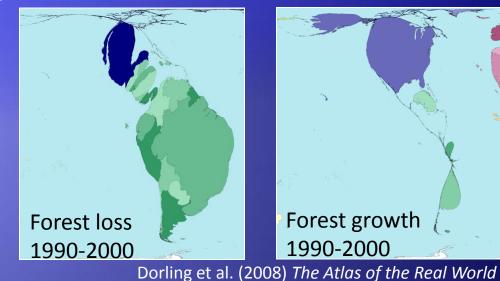
Gray Catbird (*Dumetella carolinensis*)

Spatial variation in trend driven by adult survival

Saracco and DeSante (2008) report to NFWF

Scientific information needs

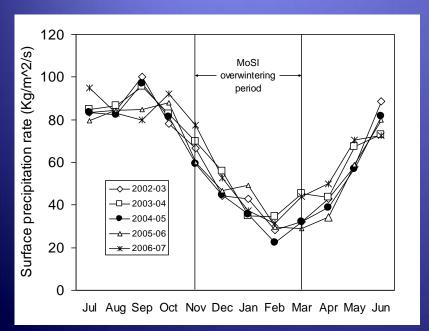
- Migratory connectivity
- Population parameters:
 - Distribution (occupancy), abundance, vital rates
- Environmental drivers of populations
 - Habitat, climate

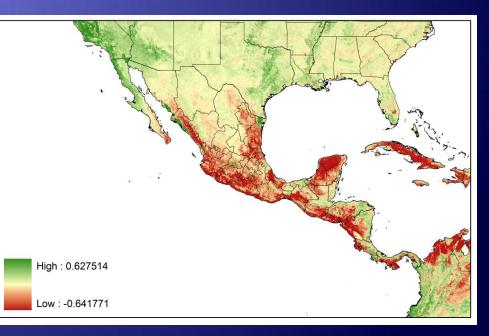

Environmental drivers of populations

- Local factors
 - e.g., forest cover, fragmentation
- Carry-over effects
 - Events at one point in life cycle affect demography at later stage
 - Seasonality of winter habitat Climate Change

Environmental drivers of populations

Large-scale land-use change


Climate change


Predicted precipitation change between 1980-1999 and 2090-2099

Seasonality of winter habitat

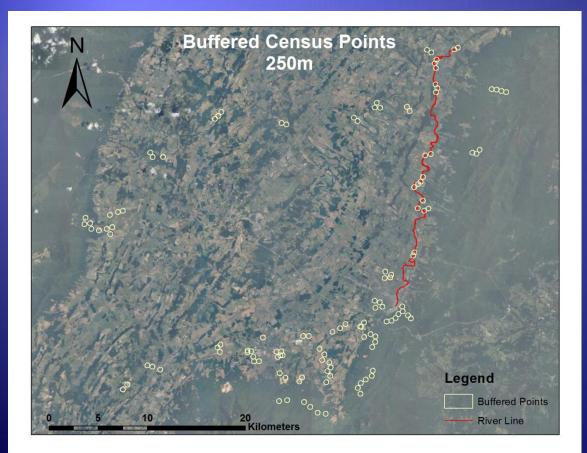
- Overwintering period transitions from wet to peak dry seasons
- Dry forests drop leaves
- Many humid forests of Caribbean slope leaf out
- Higher quality habitats resilient to drying

Case Study: South River mercury contamination in Virginia

- Partnership among industry, government agency, academic institution, and NGO
- Target habitats and species established
- In process of collecting and analyzing data to guide restoration scaling/crediting:
 - Breeding surveys in South/Shenandoah River basin completed this summer
 - Analysis of MoSI data 2003-2010 to guide with winter restoration efforts
- Identification of potential restoration sites and partners underway

South River target species and habitats

- Forest predominant historical habitat
- Currently mosaic of agriculture, shrub, forest, and riparian/wetland
- Species selected to represent variation in natural habitats
- Detections on surveys in local landscape
- Data available to guide restoration
- priority for species of high conservation concern
 - Partners in Flight (PIF) ranking, USFWS



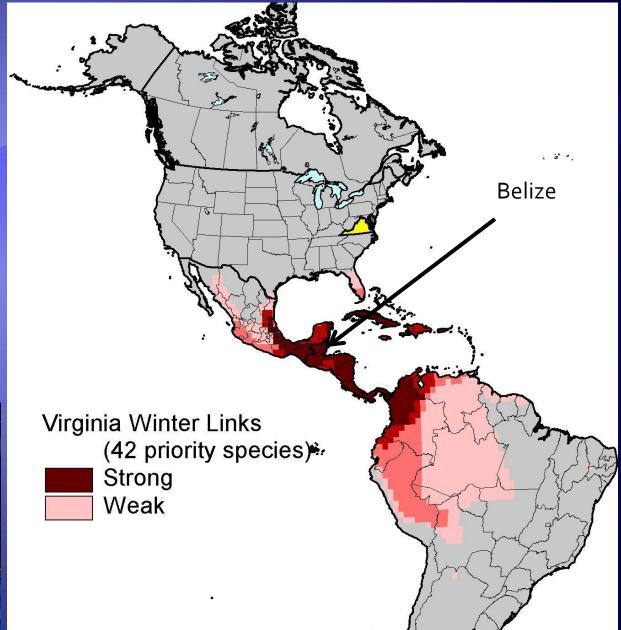
South River target species and habitats

	Detected on South River Surveys 2005-06	Significant BBS decline1966- 09	USFWS National Species of Concern	PIF Continental Score ≥ 13
Wood Thrush	Х	X	X	Х
Ovenbird				
Yellow Warbler	Х	Х		
Gray Catbird	Х	Х		
Kentucky Warbler		Х	Х	Х
Black-and-white Warbler	Х			
Common Yellowthroat		Х		
Hooded Warbler				Х
Worm-eating Warbler	Х		Х	Х
Yellow-breasted Chat	Х	Х		
American Redstart	X			

Breeding Surveys (July 2011)

- 180 point counts have been completed to:
 - derive habitat-specific species densities; and
 - develop a restoration scaling tool.

Identification of off-site opportunities, partners



Why Belize?

- Politically stable, English primary language
- Strong environmental ethic, yet has the usual pressures from development and economic growth
- Large private landholdings of conservation concern available for protection
- Established environmental non-profits present and are strong conservation stakeholders
- North American neotropical migrants are widely distributed and overwinter in high densities

Neotropical migrant link is strong between Virginia and Belize

http://www.partnersinflight.org/pubs/ts/04-Connections/

Criteria for Belize site selection

(a) neotropical migrants and
 (b) highly ranked species of conservation concern (per Partners in Flight);

(2) Overall high conservation value of property;

(1) High proportion and abundance of both

(3) High connectivity with other protected properties;

(4) Solid ability of land steward to protect and maintain the property;

(5) Risk of development pressure and/or habitat degradation;

(6) Cost reasonableness

Belize Restoration Example 1 - Acquisition

- Belizean private land owner
- Managed by US Citizen (NGO)
- 1,153 acres
- Cost \$1,500/acre
- Total Cost Approximately \$1.8 million
- <u>Status</u>: Property could be sold at any time

Belize Example 2 - Habitat Enhancement

Background: Primary forest area adjacent to NGO-controlled preserve area has been converted to agricultural land

- Farmers' local practice is to grow pineapple and/or bananas
- Monocultures with pesticide = poor bird habitat

Belize Example 2 - Habitat Enhancement

- Support transitioning land to shade grown agricultural use coffee, vanilla bean, etc.
- Avian monitoring to evaluate species diversity and abundance
- Use geolocators to track migration of birds from Belize as well as at impacted sites in the U.S. (coordinate with neotropical migrant education program)
- School to school outreach

SUMMARY International Restoration Challenges

- Establish biological basis and need for the project(s)
- Establish governmental and local support
- Coordinate with other Federal programs
- Funding mechanisms
- Develop the project to guarantee performance
 - On site oversight
 - Legal protections
- Design a project that enables evaluation of success
- Conduct site visits when practical

Summary

- NRDA-recovered funds have successfully restored habitats and populations of a variety of wildlife
- Projects involving migratory birds should consider costs/benefits of restoration at multiple sites that target different points of life cycle
- Science-based framework proposed to guide selection of restoration opportunities
- Case study in progress, but should provide model for leveraging variety of data to design, implement, and assess, multi-site restoration
- Post-implementation monitoring critical for gauging success

Acknowledgements

- DuPont Mike Liberati, Ralph Stahl
- College of William and Mary Dan Cristol
- Contributors to MAPS, MoSI
- USFWS NMBCA funding

QUESTIONS?

John Schmerfeld U.S. Fish and Wildlife Service National Wildlife Refuge System 4401 N. Fairfax Drive Arlington Virginia, 22203 John_schmerfeld@fws.gov 703-358-2332

Jim Saracco The Institute for Bird Populations www.birdpop.org jsaracco@birdpop.org 907-957-4790

