The "River of Grass" Paradigm: Planning Everglades Restoration through Model-Assisted, Interactive Public Engagement

Walter Wilcox, <u>Christopher McVoy</u> and Cal Neidrauer South Florida Water Management District West Palm Beach, FL

August 3, 2011

Nat. Conf. on Ecosystem Restoration

The Pre-Development Everglades

* Within the ridge & slough landscape, ground elevation = slough bottom. For other landscapes, ground elevation = average model ground surface.

Pre-Development

The Current Everglades

* Within the ridge & slough landscape, ground elevation = slough bottom. For other landscapes, ground elevation = average model ground surface.

Lost:

- Water Storage
- Temporal Buffering

Gained:

- E & W Flows
- Compartmentalization
- Stakeholders

Stakeholders:

- Lake Okeechobee
- Estuaries, W & E
- Agriculture
- Everglades
- Urban

Two Restoration Processes

2) River of Grass

1) CERP

(Comprehensive Everglades Restoration Plan - WRDA 2000)

River of Grass project planning task

How should new and existing land be used for Everglades restoration?

What combination of:

- water storage
- water treatment
- spatial extent (natural area)
- agriculture
- recreation

"Divide and Conquer"

Two separate tasks:

(1) Upstream <u>inflow conditions</u> needed to restore the natural area - *emphasize*

(2) Restoration <u>vision</u> for the natural area (remaining Everglades) - *put on hold*

But, how could we know inflow needs?

(without a downstream vision)

Two-pronged, parallel approach:

- (1) <u>Bracketing</u>: upstream (Red Line) inflows needed to satisfy a <u>range</u> of visions
- (2) Science Update + New Tools to help <u>narrow</u> the range of visions

Public Participation: Design of the Configurations

- SFWMD did <u>not</u> design configurations
- All stakeholders and public invited to design workshops
- Design groups could form as desired
- Open exchange of information
- Public meetings webcast; materials posted to website
- SFWMD would evaluate proposed configurations for ability to meet flow (red line) and water quality goals
- Groups could optimize for any additional goals

SFWMD support of Public Participation

- Pre-design modeling response surfaces
- GIS: computers, numerous data layers
- Variety of tools and analyses

- Reiteration of goals: Configurations must meet red line flows and water quality targets
- SFWMD would model and evaluate all proposed configurations using identical criteria
- Comparative results would be presented in public workshop

SFWMD support: Modeling and Evaluation

- Screening model used to facilitate rapid turnaround
- Everglades hydrology simulated for each configuration
- SFWMD scientist teams evaluated ecosystem responses to each configuration for:
 - Everglades
 - Lake Okeechobee
 - Caloosahatchee and St. Lucie estuaries

- SFWMD teams evaluated costs of each configuration

Round Two

- Results of SFWMD analyses of Round One presented
- Groups offered chance to revise their configurations
- SFWMD modeling and analysis repeated on revised configurations

Narrowing of process:

- SFWMD team picked "common elements" of the nine group configurations, forming three configurations to carry forward for more detailed analysis

What did we learn? (South Forida-specific)

- Groups optimizing for very different goals could arrive at very similar configurations

- Replacing lost hydraulic storage is critical
- Expanding "natural area" would be a water sink, reducing water available to remaining Everglades
- Electricity is like hydrology

The River of Grass Planning Process

- Educated stakeholders
- Treated stakeholders respectfully and constructively
- Allowed direct interactions between stakeholders and w/ SFWMD
- Fact-driven, focused, and inclusive

What River of Grass planning process demonstrated

Fear: Involving stakeholders will produce unworkable scenarios. Scenarios were innovative and broad.

Fear: Stakeholders do not have needed capacity.Groups either brought own technical support, or relied on SFWMD, improving their respect for agency's expertise.

Fear: Involving stakeholders will slow progress. Progress was faster due to focus on key stakeholder issues.

Conclusions

Key Elements of Success:

- Incorporation of most current science
- Public participation
- Management and staff involvement and commitment
- Customized modeling and visualization tools
- System-wide perspective

AMIAN

Christopher W. McVoy Winifred Park Said Jayahtha Obeysekera Joel A. VanArman and Thomas W. Dreschel