Applying Engineering Solutions to the Science of Invasive Aquatic Species Control – Asian Carp and Sea Lamprey

Bill Holman, P.E. Stanley Consultants

Sea Lamprey: Great Lakes Invader

- •1930's Sea lamprey reach the upper Great Lakes
- •1950's Collapse of lake trout population
- •1960's Effective sea lamprey control measures instituted

Lake Superior Sea Lamprey and Lake Trout Populations

Source: USGS

Asian Carp: Upper Mississippi Invader

•1990's – Mississippi River flooding allows Asian carp to escape from aquaculture ponds to river

•2006- Asian carp found 50 miles away from Lake Michigan

2011 – Asian carp caught at confluence of St. Croix and Mississippi River
2 regions of concern

•Lake Michigan

•Mississippi River Headwaters

Methods of Control

Chemical

Mechanical

Electrical

Physical

Barrier Project Development

PHASE	STAGE	TASKS	PURPOSE	Scientists
Ι	Investigation	Site Visit/Inspection Discussion of Issues/Alternatives Estimate Conceptual Quantity/Cost Quantify Project Needs/Issues Concept Analysis/Design	Define Future Project Stages	 Define problem Establish objectives Characterize species behavior
II	Data Collection	Topographic and Structure Survey Soil Borings and Testing Design Parameter Analysis	Basis of Design	 Provide feedback <u>Engineers</u> Define design parameters Evaluate feasibility Layout structure Detailed design Develop construction
III	Final Design	Detailed Analysis/Design Develop Drawings Estimate Quantities/Cost Develop Construction Documents Refine Design	Construction	

Sea Lamprey

Tendencies

Live in Great Lakes
Ascend gravelly streams and rivers to spawn in spring
Stream flows are typically highest in spring

Capabilities

Low swimming speed but can attach to rocks/objects
Cannot ascend vertical drops greater than 18"

Sea Lamprey Barriers

Days River

- •Existing barrier in U.P. of MI constructed in mid-80's
- •No longer effective
- •Project findings
 - •2' raise could improve effectiveness by 87%
 - •Removing ATV trail lowers tailwater
 - •Minimal upstream flooding impacts

Sea Lamprey Barriers

Ontonagon River

- Most productive sea lamprey stream
- •Use abandoned bridge
- •Use skewed weir to control velocity

Project findings

- •Highly variable flow regime
- •Spring water levels could be up to 10' higher than shown in photo
- •Use sheet pile weir
- •Construction difficult (i.e. \$\$) but possible in 2 stages
- Difficult to control velocity during normal spring flows

Sea Lamprey Barriers

Manistique River Barrier

- •Existing dam
- •Significant concrete deterioration
- •Void and crevice filled bedrock
- •Flood impacts
- •Environmental concerns

Sea Lamprey Traps

Manistee River

- •Existing dam provides barrier
- •Design trap box to be removable
- •Valved pipes (2) to provide flows
- •Removable grated panels and crane for trap lifting
- •Switch from deep pipe pile to hybrid shallow pile/slab foundation
- 2010 Construction

Sea Lamprey Traps

Cattaraugus Creek

- Existing dam provides barrierHistoric structure
- •No attachment to powerhouse
- •Remove turbine runner
- •Remove 14' of sediment in forebay
- Concrete slab foundation
- Stoplog adjustable openings
 Provide 2 cranes for lifting trap up to parking area
 Construction 2011

Sea Lamprey Trap Testing Facility

Harlow Creek

- •Proposed facility on small creek in U.P. MI
- •Adjustable angle and weir heights
- Removable posts with stoplogs
- •Test variations to improve trapping effectiveness

Asian Carp

Potential Affected Waters:

- Upper Mississippi
- Lake Mille Lacs

Detrimental Effects:

- Jeopardize native fish species
- Hazard to boaters/water skiers
- Fishing contributes \$2 billion/year to the Minnesota economy

Capabilities:

- 25 feet per second burst velocity
- 10-foot leaping ability

Tendencies:

- No seasonal migration habits
- Migrate during high river flows

Coon Rapids Dam

Spillway Gates

Inflatable Crest Gate

Hydraulic Crest Gate

Apron Scour

Apron Scour Damage

Minnesota

Asian Carp Passage

Barrier & Deterrent Alternatives

Behavioral

- Strobe lights
- Air bubble curtains
- Acoustics
- Electrical barriers
- Hydrodynamic Louvers

Physical

- Screens
- Curtains
- Vertical drops*
- Water velocity barriers*

* Deemed practical & feasible at Coon Rapids Dam - other alternatives dismissed due to width of waterway, high river flows, water level fluctuations, & climate/ice.

Evaluation of Coon Rapids Dam

- Spillway hydraulics (vertical drop & water velocity)
- Historic river flows (79 years)
- Existing gates & operation
- New gates & modified operation*

Asian Carp Passage

Evaluation of Coon Rapids Dam:

- Behavioral type barriers not practical for CRD
- Utilize natural water head and velocity as barrier (fish must swim and/or leap from tailwater to pool)

Future of Coon Rapids Dam

Conclusions: With improvements and operational changes, dam would be effective barrier ~99% of the time.

Status:

Minnesota State Government recently passed bonding bill including \$16 million for Coon Rapids Dam renovation.

Acknowledgements

Greg Klingler Fisheries Biologist Sea Lamprey Management Program U.S. Fish and Wildlife Service

Jason Boyle – Dam Safety Engineer Brian Nerbonne – Stream Habitat Specialist Minnesota Department of Natural Resources

Marty Weber Principal Water Resources Engineer Stanley Consultants

Questions?

