Toxic Chemicals and Fish Health in Chesapeake Bay

Vicki Blazer L. Iwanowicz, J. Young, D. Alvarez, S. Zuagg and D. Kolpin

Chesapeake Bay Executive Order Strategy for Protecting and Restoring the Chesapeake Bay Watershed

Address the significant problem of toxic pollutants in the Bay and its watershed to protect the health of fish, wildlife and people

Substantial less information on what to base specific goals and strategy for toxic reduction

Legacy contaminants as well as contaminants of emerging concern

Chemicals of "Emerging Concern"

 Defined as synthetic or naturally occurring chemicals that are not commonly monitored in the environment, are generally not regulated, but have the potential to enter the environment and cause adverse effects
 Newly recognized effects such as endocrine disruption of exposure to low concentrations of legacy contaminants

Chemicals of Emerging Concern Sources

Wastewater Treatment Plants
 Industrial effluent
 Stormwater runoff
 Agriculture
 Landfill leachate
 Gas extraction/Marcellus shale

"Emerging Contaminants" WWTP-Related

 Pharmaceuticals – Human and Animal
 Synthetic Hormones – birth control, hormone replacement therapy
 Antibiotics
 Viagra to Prozac

Personal care products
 Antimicrobials – soap, detergent, toothpaste
 Fragrances
 Organic UV filters
 DEET

Agricultural Inputs

Manure, urine, litter – direct deposit and runoff Natural and synthetic hormones Antibiotics, feed additives Biosolids used as fertilizer Pesticides, herbicides and other chemicals

Piles of manure along the river prior to a high water event

Classical Toxicology

Use conventional, single chemical toxicity Do not account for mixture effects – additive, synergistic, antagonistic Based on conventional laboratory exposures Generally only one type of exposure (water, sediment, food) Water quality (pH, temperature, conductivity) effects **Assume typical dose responses Based on testing of one or two species**

- Rainbow trout, fathead minnows
- Species differences in sensitivity

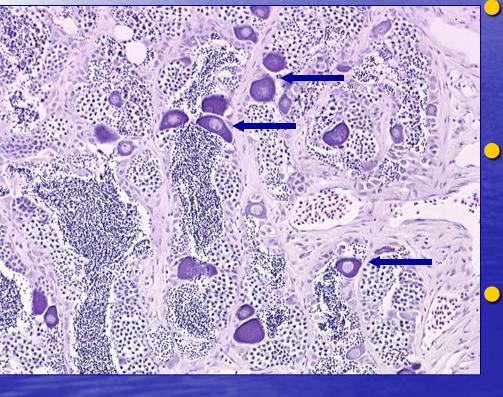
Complexities Associated with Contaminants Wild Populations

Endocrine/Immune systems - chemical communication and feedback mechanisms Lack of classic dose response curve – hormesis Multiple contaminant exposure routes - water, sediment, food (yolk sac) Exposures early in life may initiate effects seen in mature adults **Complex mixtures – additive, synergistic,** antagonistic effects

Benchmark Toxicity Endpoints

Acute toxicity
 96 hour LC₅₀
 Chronic toxicity
 Mortality
 Larval fish growth
 Reproductive - # of eggs produced

Lack of Sublethal Benchmarks


Address
 Endocrine disruption/modulation
 Reproductive health
 Immune system/disease resistance

Population effects
 Acute or chronic mortality
 Reproductive effects

Fish Health Issues Chesapeake Bay Watershed

- Indicative of environmental stress
 Skin lesions and kills of bass, sunfish and suckers
 - Adults in the Potomac and James (spring)
 Young-of-year in the Susquehanna (summer)
 High prevalence of intersex in bass
 Poor recruitment of yellow perch in
 - certain tributaries
 - Skin and liver tumors in brown bullhead in certain tributaries

Intersex in Normally Gonochorist Fishes

Suggested as a marker of endocrine disruption **Most often associated** with exposure to estrogenic compounds **Probably induced early** in life, but may occur due to exposure later in life

Complexities Contaminants of Emerging Concern

Many are produced to have a biological effect and so can influence nontarget organisms at very low levels May be additive in their effects Effects of CEC demonstrated at very low levels 0.35 ng/L estradiol recently set as the aquatic "no effects level" (Europe) < 1.0 ng/L induces intersex in numerous fish species •••• 0.8 or above is the minimum detection limit for many studies

Integrative Water Samplers

 Semi permeable Membrane Devices (SPMDs)-accumulate hydrophobic compounds
 Polar Organic Compound Integrative Samplers (POCIS)—accumulate hydrophilic compounds

Methods to Address Complex Mixtures

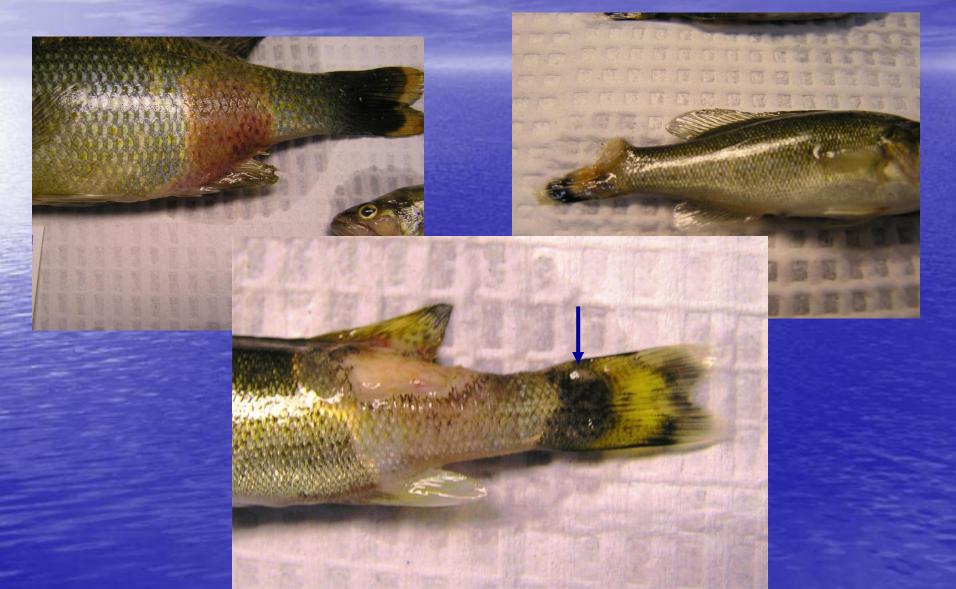
Screening either grab water extracts or the extracts from the integrative samplers using in vitro cell assays

- YES, BLYES, breast cancer cells total estrogenicity estrogen equivalents
- Total androgenicity
- Transgenic zebrafish
- Nuclear translocation assays glucocorticoids

Integrative sampler hormone results – no hormones above method quantification levels (N. Fork Shen)

17β estradiol, 17α-ethynylestradiol, estrone, estriol
 Estrogen equivalents ranged from 14-79 ng estradiol/sample depending on the site

Resident Fish as Integators of Environmental Stressors



Fungal Infections

Bacterial Infections

Gross Lesions of Adult Fishes

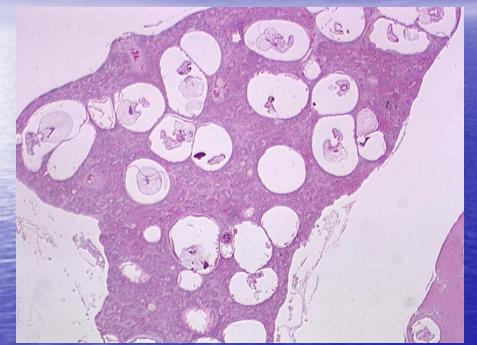
Gross Lesions of YOY SMB Susquehanna River

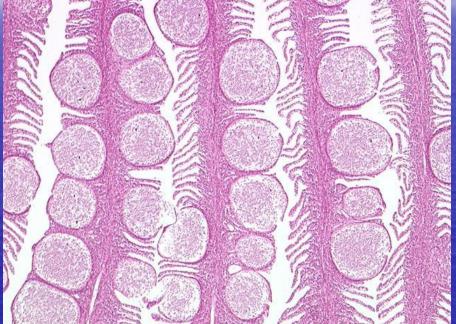
Overall Findings/Conclusions/ Fish Kills

Numerous pathogens contributing to the skin lesions and eventual death – no consistent findings

 Bacteria – Aeromonas hydrophila, A. salmonicida, Flavobacterium columnare
 Virus – largemouth bass virus
 Numerous parasites
 High prevalence/severity of intersex

YOY Cultured 2010


Site	Lesions	Lesions	Internal	Internal
	Aero	Flavo	Aero	Flavo
Juniata	5/5	5/5	1/8	1/8
Danville	12/15	15/15	8/18	2/18
Laceyville	1/1	0/1	4/16	0/16
mucus	3/9	0/9		
Liverpool	3/4	4/4	1/7	0/7
Clemson Island	6/6	4/6	1/8	0/8
Total	27/31	28/31	15/57	3/57


YOY SMB Parasites

High Parasite Loads – Adult Bass

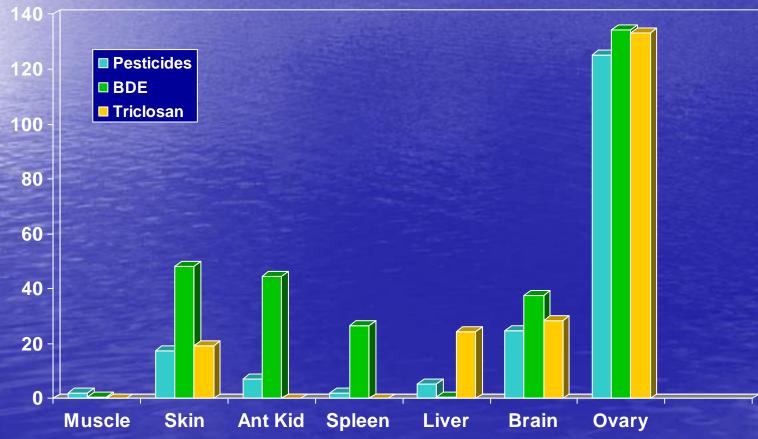
Trematodes

Myxozoans

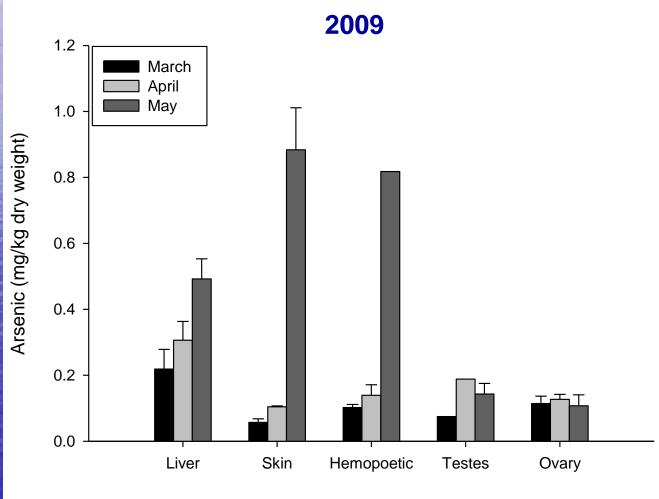
Both groups have complex life cycles that include benthic invertebrates – snails, bryozoans, worms – polycheates and oligocheates (*Tubifex*)

Fish Kill Issues Related to Intersex and Other Reproductive Findings?

Estrogens and estrogenic chemicals (estrogen mimics) are most often associated with intersex and vitellogenin production in male fishes


Increasing evidence that estrogenic chemicals and other endocrine-disrupting substances modulate the immune response and disease resistance

Also chemicals such as arsenic, atrazine, PCBs act as immunosuppressors by other mechanisms

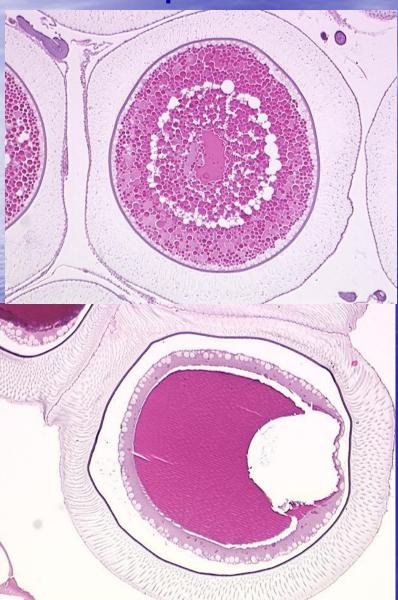

Contaminant Body Burdens

Generally whole body or fillet

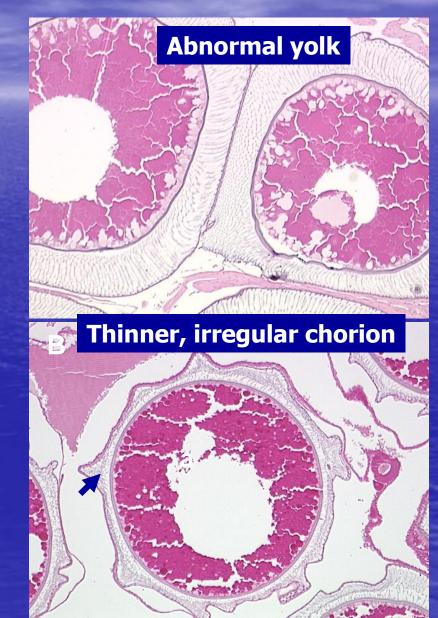
 Fillet analysis is reasonable when the concern is human health

Arsenic Tissue Contaminants Adult Smallmouth Bass

Tissue


Yellow Perch

Lack of reproductive success in urban watersheds such as Severn and South Compared variety of biological endpoints during spawning runs (2007-2009) in perch from Choptank, Mattawoman, Allen's Fresh, South, Severn - Gonad histology - Plasma hormones, vitellogenin


Sperm characteristics

Egg Abnormalities Observed

Choptank

Severn

Contaminants Measured in Tissues Yellow Perch

Chemical (µg/kg)	Brain	Ovary	Liver	Muscle
HCB	ND	ND	2.47	5.90
PCA	ND	ND	1.31	4.04
DCPA	0.22	0.25	ND	ND
Fipronil compounds	0.21	0.09	ND	ND
Chlordane compounds	4.30	5.41	3.28	0.49
Nonachlor compounds	3.36	3.51	3.18	0.20
Dieldrin	0.64	0.82	0.60	0.10
DD _x	20.50	19.30	4.95	1.30
$\sum \mathbf{PCBs}$	61.34	39.30	41.37	2.81
SBDEs	7.41	0.75	1.03	0.59

Toxic Tissue Levels

 Understanding what effects the individual compounds and complex mixtures have in the individual tissues in which they accumulate
 Spleen, anterior kidney – influence disease resistance

- Brain effects on reproduction, behavior etc.
 Oocyte maturation depends the pituitary gonadotropin, luteinizing hormone stimulating the production of maturation-inducing hormone.
- Egg
 - Effect vitellogenin incorporation, final maturation etc.
 - Fish hatch as sac fry for the first 2-3 weeks of life live by absorbing the yolk.

 How do chemicals present in the egg (and water and sediment) affect the fish during this critical stage of sexual differentiation, immune system development etc.

Conclusions Toxics Monitoring Chemical Monitoring Multiple matrixes (water, sediment, tissue) Appropriate sampling regimes (temporal, spatial) Methods to measure biological relevant concentrations Biological Effects Monitoring Sensitive species Sensitive life stages Variety of methods to detect effects – gross observations to molecular mechanistic indicators Methods to evaluate biological effects of complex mixtures

Conclusions

We need a better understanding of the complex interactions of contaminants of emerging concern, legacy contaminants and water quality parameters such as nutrients, pH, temperature
 We need a better understanding of the temporal changes (flow, season, activities on the land) that may help target management actions, particularly during sensitive life-stages

Management will depend on the individual area/watershed – point and nonpoint sources within the catchment

Acknowledgements

Virginia DGIF and DEQ
 PA F&B and DEP
 West Virginia DNR and DEP
 Maryland DNR
 Virginia Tech
 West Virginia University

US EPA US Fish Wildlife Service NOAA

~

*

