Evaluation of Environmental Benefits for Louisiana Coastal Area (LCA) Small Diversion at Convent / Blind River Project with the Wetland Value Assessment (WVA) Methodology

Larry Schwartz, Ph.D., P.W.S Roger Menendez, AICP Brendan Brown Angela Trahan (FWS)

CDM

Lower Mississippi River Diversions of Freshwater, Nutrients and Sediments for Wetland Restoration

Overall Goal of Diversion Projects

◆ Diversions of freshwater, nutrients and sediments from the Mississippi River are implemented to enhance and restore forested wetlands and lower the effect of large scale storm surges as compared to a future condition with continuous degradation and loss of these ecosystems.

Project Area Diversion at Convent to Blind River

Historic Impacts to Maurepas Swamp

- ◆ The Mississippi River levee system isolated Maurepas Swamp and Blind River from natural, periodic flooding cycles that provided nutrients, sediment and pulsing for swamp growth and development
- Other impacts to Maurepas Swamp include logging, natural subsidence, sea level rise, construction of drainage canals, roads, pipelines and other utilities, storm surges, and saltwater intrusion

Historic Impacts to Maurepas Swamp

- ◆ The lack of freshwater, nutrients and sediment input from the Mississippi River combined with other impacts has resulted in degradation, reduced biological productivity, and loss of accretion in the swamp
- The overall impact to Maurepas Swamp is the conversion to marsh and open water and loss of storm surge buffering provided by forested wetlands

Cypress in Maurepas Swamp prior to 1900

Project Area

Project Components

- Getting the flow from the Mississippi River
- Conveying the flow to the swamp
- Distributing flow in the swamp

Drainage Canals Connected to Blind River

Blind River Channelized

Hurricane Water Level in Mauerpas Swamp

Hurricane High Water Level

Project Objectives

- The overall project goal is to reverse the deterioration of Maurepas Swamp and prevent the transition to marsh and open water
- Facilitate swamp building with sediment and nutrients
- Improve water distribution in the swamp to maximize distribution of sediment and nutrients for swamp building
- Establish hydroperiod fluctuation in the swamp, including dry periods for seed germination and seedling survival
- Improve water quality, fish and wildlife habitat in the swamp and in Blind River

Components in All Alternatives

- Culverts or Siphon to move water from the Mississippi River through or over the existing levee when needed
- Earthern transmission channel to convey water from the Mississippi River to the swamp
- ◆ Large and small scale gaps in exisiing berms with variable spacing surrounding the swamp to maximize flow distribution throughout the swamp
- Control structures at critical locations in channelized portions of Blind River to maximize flow distribution throughout the swamp and to provide flood control

EIS Plan Formulation and Screening Provided Final Array of Alternatives

- No Action –required
 Establishes baseline condition for comparison of alternatives and their benefits
- ◆ Alternative 2 3000 CFS Diversion at Romeville
- ◆ Alternative 4A 3000 CFS Diversion at South Bridge
- Alternative 4B 3000 CFS Diversion at South Bridge with split flows
- ◆ Alternative 6 Two 1500 CFS Diversions; Romeville and South Bridge

Romeville Diversion - 3,000 CFS (Alt 2)

Southbridge Diversion – 3,000 CFS (Alt 4A)

2 Diversions (Alt 4B - 3,000 CFS, Alt 6 – 1,500 CFS)

Evaluation of Environmental Benefits for Alternatives with Wetland Value Assessment Model (WVA)

- Habitat Field Data Collection
- Habitat Condition Type Classification Map by Hydrologic Units and Drainage Basins
- H & H Model Results
- Habitat Suitability Index (HSI)
- **♦** Benefits in terms of Avg. Annual Habitat Units (AAHUs)
- Incorporated into IWR Plan (costs)

Habitat Condition Type Classification Existing and New Field Data Collection

♦ > 50 years to marsh
9 stations

♦ 30 - 50 years to marsh
7 stations

◆ 20 – 30 years to marsh
7 stations

Habitat Condition Classification Map

> 50 years to marsh

30 – 50 years to marsh

20 – 30 years to marsh

Application of WVA Model

- Model provides Habitat Suitability Index (HSI) for each Hydrologic Unit and Drainage Basins for each Alternatives in terms of:
 - Field Measurements
 - H&H Model Results
 - Average annual water depth
 - Frequency of dry-out
 - Backflow prevention
 - Habitat Condition Type
 - Alternative Influence Area
- Determine Habitat Units (HUs) = HSI x Area
- Determine Annual Average Habitat Units (AAHUs) for project life (50 years)

WVA Habitat Suitability Index (HSI)

- Stand structure
 - Field measurement

% cover by cover class (canopy, mid-story, understory)

- Stand maturity
 - Field measurement

Cypress dbh, tupelo dbh

% composition (# of individuals) and mortality rate for tupelo

- WVA model uses growth rates to calculate basal area change over time
- Water Regime
 - Field measurement

Flood duration: seasonal, temporary, semi-permanent, permanent

Flow exchange: high, moderate, low, none

- H & H model results

Average annual water depth, frequency of dry-out, backflow prevention

- Salinity
 - Field measurement
 mean high salinity during growing season

Alternative Influence Areas

- ◆ High Influence Area (High IA)
- Moderate Influence Area (Moderate IA)
- **♦ Low Influence Area (Low IA)**
- Minimal Influence Area (Minimal IA)

Influence Areas Romeville Diversion - 3,000 CFS (Alt 2)

Influence Areas Sunshine Bridge Diversion – 3,000 CFS (Alt 4A)

Influence Areas 2 Diversions (Alt 4B - 3,000 CFS, Alt 6 - 1,500 CFS)

Example HSI results

WETLAND VALUE ASSESSMENT COMMUNITY MODEL

Swamp

169

Project...... Alternative 2_High IA_Swamp WVA_20-30_YRS_Marsh Project Area.......

Condition: Future Without Project

	Variable		TY 0		TY 1		TY 20		TY 30		TY 50	
			Class/Value	SI								
	V1	Stand	% Cover									
		Structure	Overstory									
			23		23		<33		<33		<33	
			Scrub-shrub		Scrub-shrub		Scrub-shrub		Scrub-shrub		Scrub-shrub	
			33		33							
			Herbaceous		Herbaceous		Herbaceous		Herbaceous		Herbaceous	
			80		80							
			Class		Class		Class		Class		Class	
			1	0.10	1	0.10	1	0.10	1	0.10	1	0.10
	V2	Stand	Cypress %									
		Maturity	18		10.42		18.87		18.87		100	
			Cypress dbh		Cypress dbh		Cypress dbh		Cypress dbh		Cypress dbh	
			11.21		11.87		13.96		14.6		15.88	
			Tupelo et al. %		Tupelo et al. %		Tupelo et al. %		Tupelo et al. %		Tupelo et al. %	
			82		89.58		81.13		81.13		0	
			Tupelo et al dbh		Tupelo et al dbh		Tupelo et al dbh		Tupelo et al dbh		Tupelo et al dbh	
			13.08	0.93	13.56	0.97	15.08	0.97	15.81	0.98	0	0.99
			Basal Area		Basal Area		Basal Area		Basal Area		Basal Area	
			113.85	0.56	122	0.77	82.98	0.58	90.81	0.59	18.42	0.20
	V3	Water Regime	Flow/Exchange									
			low		low		low		low		low	
			Flooding Duration		Flooding Duration		Flooding Duration		Flooding Duration		Flooding Duration	
			semipermanent	0.45	semipermanent	0.45	permanent	0.30	permanent	0.30	permanent	0.30
	V4	Mean										
		High Salinity	1.0	1	1.0	1	1.0	1	1.0	1	1.0	1
			HSI =	0.34	HSI =	0.37	HSI =	0.31	HSI =	0.31	HSI =	0.23

Example AAHU Calculation

AAHU CALCULATION

Project: Alternative 2_High IA_Swamp WVA_20-30_YRS_Marsh

Future Witho	out Project		Total	Cumulative
TY	Acres	x HSI	HUs	HUs
0	169	0.34	57.64	
1	169	0.37	62.52	60.08
20	169	0.31	51.61	1084.23
30	169	0.31	51.72	516.62
50	169	0.23	39.39	911.07
			Total	
			CHUs =	2572.00
			AAHUs =	51.44

Future With	Project		Total	Cumulative	
TY	Acres	x HSI	HUs	HUs	
0	169	0.34	57.64		
1	169	0.47	79.47	68.55	
20	169	0.91	153.14	2209.76	
30	169	0.86	144.99	1490.64	
50	169	0.79	133.00	2779.88	
			Total		
			CHUs =	6548.83	
			AAHUs =	130.98	

NET CHANGE IN AAHUS DUE TO PROJECT						
A. Future With Project AAHUs	=	130.98				
B. Future Without Project AAHUs	=	51.44				
Net Change (FWP - FWOP) =		79.54				

Benefits for Final Array of Alternatives AAHU Summary

	Average Anr	nual Habitat I	Jnits (AAHU:	s)
Influence, Habitat Condition Class	Alt. 2	Alt. 4A	Alt. 4B	Alt. 6
High IA, 20-30 years to marsh	77	77	77	77
High IA, 30-50 years to marsh	1,350	733	1,545	1,545
High IA, >50 years to marsh	1,293	1,014	1,532	1,532
Moderate IA, 20-30 years to marsh	93	828	919	919
Moderate IA, 30-50 years to marsh	243	1,182	1,423	1,423
Moderate IA, >50 years to marsh	745	585	1,325	1,325
Low IA, 20-30 years to marsh	935	0	354	354
Low IA, 30-50 years to marsh	527	663	137	137
Low IA, >50 years to marsh	110	447	0	0
No IA, 20-30 years to marsh	72	163	0	0
No IA, 30-50 years to marsh	585	237	0	0
No IA, >50 years to marsh	431	373	0	0
Gross AAHUs	6,462	6,302	7,313	7,313
Wetland Impacts	-41	-178	-210	-199
Net AAHU's	6,421	6,124	7,103	7,114

Final Array Benefits and Costs

Final Array Benefits and Costs Tentatively Selected Plan

	Alt. 2	Alt. 4A	Alt. 4B	Alt. 6
HUs	6,421	6,124	7,103	7,114
Cost (\$1,000s)	\$5,646	\$8,135	\$7,954	\$8,455
Cost-effective	Yes	No	Yes	Yes
Best Buy	Yes	No	Yes	Yes
Cost/HU	\$879	\$1,328	\$1,120	\$1,189
∆Cost/HU			\$3,385	\$4,054

- •Alternative 4A has lower benefits and higher costs than alternative 2 and is not a cost effective solution
- •Alternative 4B has a 44.9% increase in cost for a 9.6% increase in benefits vs. Alternative 2
- •Alternative 6 has a 53.6 % increase in cost for a 9.7% increase in benefits vs. Alternative 2
- •Tentatively Selected Plan TSP: Alternative 2 3000 CFS Diversion at Romeville

TSP- Romeville Diversion - 3,000 CFS (Alt 2)

Summary

- The goal of diversion projects is to restore or enhance forested wetlands and minimize impacts of storm surges
- Alternatives were developed to convey water, nutrients and sediments from the Mississippi River to reverse the trend of swamp deterioration
- ◆ The Wetland Value Assessment (WVA) model used to evaluate environmental benefits for each alternative
- An alternative has been selected to restore Maurepas Swamp and Blind River that maximizes environmental benefits at a reasonable cost