What determines whether or not adaptive management programs affect management and policy decisions?

David Marmorek, Lorne Greig, Carol Murray, Don Robinson ESSA Technologies Ltd., Vancouver B.C.

NCER – Aug 4, 2011 – Baltimore MD

Where our ideas come from

- 2001: workshop on factors which enable / inhibit AM (for U. Washington - *handout*)
- 2006: study of 20 adaptive forest management projects (for NCSSF)
- 1979-2011: Toolbox from various AM projects across North America

Bridging the decision-science circles in AM projects

The Forest AM Study

Potentially Enabling Factors (from UW workshop)	Forest AM Projects (20)	
	"Success" (14) "Failure" (6)	
Problem Context		
Leadership		
Executive direction		
Problem definition		
Communication & Org. Structure		
Community involvement		
Planning		
Funding		
Staff Training		
AM Science		

Key Factors Enabling AM

Context – Driving Problem

Leadership Executive Direction Problem Definition Communication Organizational Structure

Community Involvement Planning Funding Staff Training AM Science

Steps 1-5 set the foundation for Step 6 Assess Design Adjust Implement Evaluate **Monitor**

Feasibility of AM Experiments

5 tools for building bridges

1. Water Use Planning Process

www.bchydro.com

Policy Group

Generate alternative strategies Review outcomes, tradeoffs Converge to preferred option

Technical Group

Convert strategies into actions Simulate actions & outcomes Summarize tradeoffs

3. Data Quality Objectives Process

- 1. State the problem
- 2. Identify the decision
- 3. Identify inputs to the decision
- 4. Define the study boundaries
- 5. Develop an "if-then" decision rule
- 6. Specify limits on decision errors
- 7. Optimize design for obtaining data

Avoid the Path of Endless Questions

4.Simple Outputs for Managers (

Output Viewer - Rollup View Performance Measure Multi-Year Rollup % Poor % Fair % Good Description Historical flows – No gravel augmentation CH - Fall 5 39 56 CH - Late Fall 32 23 45 Weighted useable area -CH - Spring 16 24 60 spawning CH - Winter 12 28 60 ST1 19 40 41 Historical flows – gravel augmentation CH - Fall 5 32 63 CH - Late Fall 23 26 51 Weighted useable area -CH - Spring 9 21 70 spawning CH - Winter 7 25 68 19 ST1 7 74

But linked to details for scientists...

😼 Sacramento River Eco	logical Flows Tool	
File Edit View Repor	ts Run Window Help	
Run Output Models	Report Ulewer Reports	Preferences 🔀 💟 🞯
Output Viewer - Annual Vie	w	
-		
Performance Measure	Description	Select individual scenario x 889888888888888888888888888888888888
Historical flows – No gravel augmentation		
	graver augmentation	PM x year results of interest for
CH - Fall	Weighted useable area - spawning	
CH - Late Fall		more detailed outputs
CH - Spring		
CH - Winter		
ST1		
Historical flows – gra	avel augmentation	
CH - Fall		
CH - Late Fall	Weighted useable area -	
CH - Spring		
CH - Winter	spawning	
ST1		

SacEFT

SacEFT - Chinook & Steelhead Redd Dewatering Report

5. Choose the right tools

Problem	Tools
Disagree on desired outcomes, objectives.	Conflict resolution through negotiation
Disagree on <u>how to</u> achieve outcomes.	Science syntheses, research, pilot studies, adaptive management.

And finally...

Change occurs when the consequences of retaining the status quo are worse than the consequences of trying something new.

Thanks!