Where should we act and at what scale?

Defining the meaning of restoration from an ecological perspective

```
Jed Redwine }\mp@subsup{}{}{1}\mathrm{ , Matt Harwell }\mp@subsup{}{}{2}\mathrm{ , Shawn Komlos }\mp@subsup{}{}{3}\mathrm{ , Leonard Pearlstine }\mp@subsup{}{}{4}\mathrm{ , and Erik Powers }\mp@subsup{}{}{5
    1 Atkins, Jacksonville, FL, USA
    2 U.S. Fish and Wildlife Service, Vero Beach, FL, USA
3 U.S. Army Corps of Engineers, Institute for Water Resources, Washington, D.C., USA
    4 U.S. Fish and Wildlife Service, Vero Beach, FL, USA
    5 Parsons Corporation, Austin, TX, USA
```


Ecosystem Valuation: http://www.ecosystemvaluation.org

Ecological functions

- Groundwater recharge
- Reproductive success of duck/fish/deer populations
- Stand-level forest productivity
- Pollination
- Carbon/Nitrogen/Phosphorus cycling

Ecological/evolutionary functions

- Species diversity
- Rate of endemism
- Physical size
- Uniqueness
- Spatial arrangement
- Resilience

Ecological Services

- Clean water availability
- Fishing/hunting recreation opportunities
- Lumber production
- Crop harvest success
- Pollutant processing capacity

Ecological/evolutionary services

- Marketplace quality/scale
- Marketplace uniqueness
- Market size
- Regional network of markets (migration corridors, diversity generating regional configurations)

Decision critical criteria at three scales

- Global scale:
- Support species diversity patterns
- nested within this is reducing extinction risks.
- Regional scale:
- Restoration programs that address regions with high diversity are a priority over those that don't.
- How we address each region is unique.
- Local scale:
- supporting basin functions to ensure
- Natural system level hydrology
- Reference water quality (particularly TP)

Result

- A patchwork of preserved natural systems (national preserves) buffered by healthy landscape that expresses a mosaic of land uses which deliver desirable ecological services because they exhibit coherent ecological functions.

> It is just that easy

National/Regional scale Restoration Programs

- National Ocean Council: Restoration of Ocean, Coastal, and Great Lakes Ecosystems.
http://www.whitehouse.gov/sites/default/files/microsites/ceq/sap 6 repr full content outline 06-02-11 clean.pdf
© River/Watershed Restoration:
- Chesapeake Bay
- Gulf Coast/Coastal Louisiana
- Upper Mississippi River
- Missouri River
- Everglades Ecosystem
- Platte River
- Rio Grande River
- Colorado River/Glen Canyon Dam
- Klamath River/Watershed
- Puget Sound
- Columbia River

Preventing extinction
A RATIONAL GLOBAL APPROACH

Animals under threat

- Ten percent of all bird species are likely to disappear by the year 2100, and another 15 percent could be on the brink of extinction, according to a new study by Stanford University biologists. This dramatic loss is expected to have a negative impact on forest ecosystems and agriculture worldwide and may even encourage the spread of human diseases, according to the study published in the Online Early Edition of the Proceedings of the National Academy of Sciences (PNAS) in December.
- Stanford University (2004, December 20). Global Bird Populations Face Dramatic Decline In Coming Decades, Study Predicts. ScienceDaily. Retrieved July 18, 2011, from http://www.sciencedaily.com/releases/2004/12/041220023334.htm
- "Disconcertingly, avian declines may in fact portray a best-case scenario, since fish, amphibians, reptiles and mammals are 1.7 to 2.5 times more threatened [than birds]."

Source: IUCN, obtained from: http://gbo3.cbd.int/the-outlook/gbo3/biodiversity-in-2010/species-populations-and-extinction-risks.aspx

GLOBAL BIODIVERSITY: SPECIES NUMBER OF VASCULAR PLANTS

Delivering quality water
A RATIONAL LOCAL APPROACH

A rational local approach

Flanagan and Richardson 2010

Fig. 1 Location of study watersheds in eastem North Carolina, USA

S	Table 1 Description of predictor variable codes used in the classification tree models				
	Type	Prefix	Numerical code ${ }^{\text {x }}$	Abbreviation	Description
	Land-use/	WS,	21	RES.LI	Low intensity residential
	land-	BF	22	RES.HI	High intensity residential
			23	COM	Commercial/industria//transport
Results			33	TRANS	Transitional
			41	FOR.DEC	Deciduous forest
			42	FOR.EVG	Evergreen forest
PRIOR			43	FOR.MXD	Mixed forest
$/^{4.41}$			81	AG.PAST	PastureAhay
			82	AG.ROW	Row crops
			91	WET.WDY	Woody wetlands
$<\gg=$			92	WET.EMG	Emergent herbaceous wetlands
	Summations	WS, BF	NA	UNDEV	Portion of watershed or 90 m stream buffer in undeveloped land-uses sum(41, $42,43,91,92)$
				FOR.ALL	Portion of watershed or 90 m stream buffer in forest land-cover $\operatorname{sum}(41$, 42, 43)
				AG.ALL	Portion of watershed or 90 m stream buffer in agricultural land-use sum(81 , 82)
WS.TRANS 1.005 BF.AG.ALL 16.95				WET.ALL	Portion of watershed or 90 m stream buffer in wetland land-cover sam(91,92)
	Other	NA	NA	NWI ${ }^{\text {b }}$	Portion of watershed or 90 m stream buffer NWI polygons
				WT.Peri.Area	Average ratio of perimeter to area of NWI wethand polygons (fragmentation)
$\begin{array}{llllll} & -3.028 & -2.147 & -1.654 & -0.9329\end{array}$				DIS.MM	Instantaneous discharge measurements standardized as millimeters per day.
Fig. 3 Regional regression tree of \log natural transformed				HYDRIC ${ }^{\text {c }}$	Portion of watershed or 90 m stream buffer as hydric soil series
ortho phosphorus concentration. The text above each split shows the variable that is being split and the test below				ANIMAL	Number of confined animal operations within watershed
indicates the threshold value identified by the model (\% of				PRIOR	\% watershed area as prior converted agricultural lands (see text).
watershed or buffer area). The lext below the terminal nodes				PT.SRC	Number of permitted point source discharge
shows the natural \log of the predicted constituent concentration. See Table 1 for abbreviations				PT.DIST	Upstream distance to nearest point source (km)

Fig. 3 Regional regression tree of \log natural transformed ortho phosphorus concentration. The text above each split shows the variable that is being split and the test below indicates the threshold value identified by the model ($\%$ of watershed or buffer area). The text below the terminal nodes shows the natural \log of the predicted constituent concentration. See Table 1 for abbreviations

Fig. 4 Regional regression tree model of \log natural transformed total phosphorus concentration. See Fig. 3 caption for further explanation

Table 1 Description of predictor variable codes used in the classification tree models

Predictors with numeric codes have prefix of WS for those characterizing the entire watershed or BF for those characterizing areas with a 90 m riparian buffer
${ }^{\text {a }}$ National Land Cover Data Set numerical codes
${ }^{b}$ USFWS National Wetland Inventory
${ }^{\text {a }}$ SSURGO database

Conclusions: Proportion of watershed in agriculture, prior land use, ratio of perimeter to area (edge/area ratio) of wetlands in basin determine water quality in NC basins

Land uses and water quality

Conclusions: Proportion of watershed in agriculture, prior land use, ratio of perimeter to area (edge/area ratio) of wetlands in basin determine water quality in NC basins

(b)

Fig. 7 Nitrate-nitrite nitrogen and total phosphorus concentrations in storm samples from taken between 9/24/99 and 9/27/99. Stations are located in the reference (REF), restored (REST) and agricultural (AG) areas of the Barra Farms site. See Fig. 1

Basin Scale Conclusions:

- >20\% natural function per basin necessary for appropriate WQ (consider this a minimum threshold that should be applied even to cities....).
- Spatial substructuring can be design-oriented (e.g. area sensitive bird species in FL. Keys, butterfly migration corridors in California, shallow lake function support in Central FL., Maximize agricultural production, high density urban system, etc....)

Decompartmentalization of the Everglades
How we are acting on what we've learned
A RATIONAL REGIONAL APPROACH

Dan Nehler, Alicia LoGalbo, Gregg Reynolds, Doug Donalson, Agnes Mclean, Andy Gottlieb, and Jed Redwine. 2008 (Released to public 2010). Analysis of 2015 Band 1 Scenarios Greater Everglades Wetlands.
www.evergladesplan.org/pm/recover/recover_docs/band_1_r eport/012810_band1_app_3.pdf

Figure 16. Satellite image of the western ridge and slough landscape, including Water Conservation Areas 3A and 3B, and the Shark Slough/Northeast Shark Slough portions of Everglades National Park. Largest circle indicates portion of landscape which most closely resembles original pattern of ridges and sloughs. Smallest circles show location of 1917 photographs that closely resemble pre-drainage descriptions. Other circles indicate various degraded conditions of present day ridge and slough landscape.

Courtesy of Dana Gentry (USACE)

Central Question

- What mechanisms create and maintain the ridgeslough landscape?
- Corrugation (vertical dimension)
- Anisotropy (longitudinal dimension)
- Wavelength (lateral dimension)

Sediment redistribution can promote cross-sectional landscape stability

Larsen, Harvey, and Crimaldi, Ecological Monographs 2007 Larsen and Harvey, The American Naturalist, 2010

1995 aerial photos were used to identify tree islands (green) in WCA3; 60\% of the 1940 islands have been lost.

Subsidence
 (NSM v4.6.2 - HAED)

Tree Island inundation duration in 2005-An average year

Elevation surveys by C. Coronado SFWMD

YR2005 - 0.73 - 74-146 - 147-219 - 220-292

Each island displays the number of days it's maximum elevation point was inundated during the year 2005 Water level data was aquired from the EDEN Network online database for each island.

All Zones FWO vs ECB

Drying Event

Severity
FWO - ECB
Simulation period 1965-01-01 to 2000-12-31

Legend (Ft Days)

Results from initial Decomp simulations

Entirely consistent with DBQ and other scoring processes

Decomp alternatives

THANKS SO MUCH!

