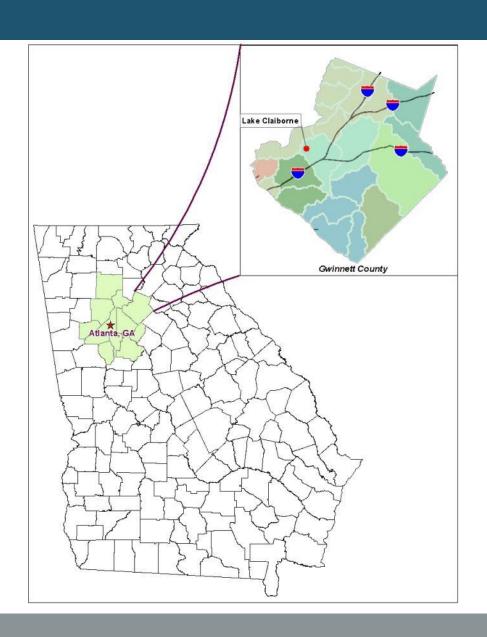
August | 2011

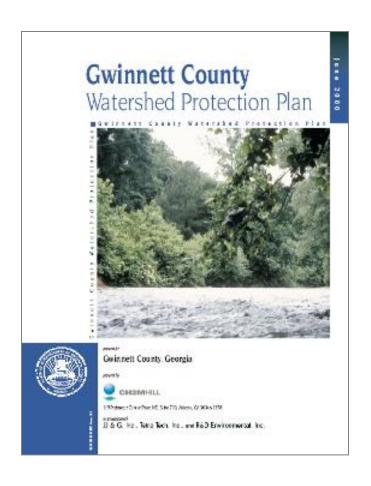
Urban Ecosystem Restoration: An Example of Stream and Lake Restoration in Metropolitan Atlanta, GA

Jill Stachura, Principal Scientist

Agenda


- Background on Gwinnett County, Georgia's Watershed Improvement Program
- Example Project Selection and Implementation

Gwinnett County:


Population: 780,000 Area: 437 sq. miles

1,300 miles drainage system 80,000 structures maintained

SU income \$32M/yr

Gwinnett County: Watershed/Stormwater Program Management

County-Wide Watershed Assessment

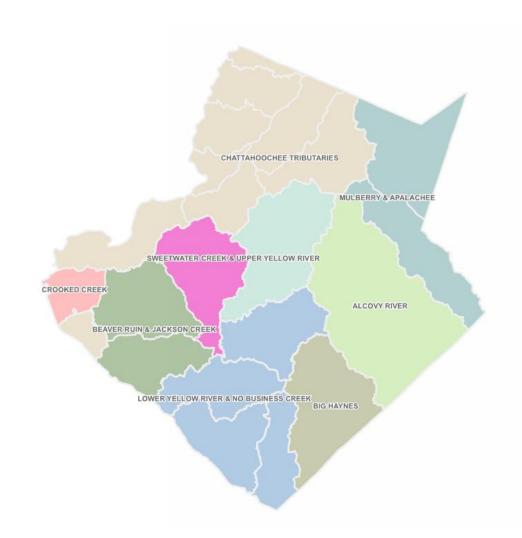
County-Wide Watershed Protection Plan (WPP)

Goal: Streams meet designated use

Establish WQ target TSS <1,600 lbs/ac/yr

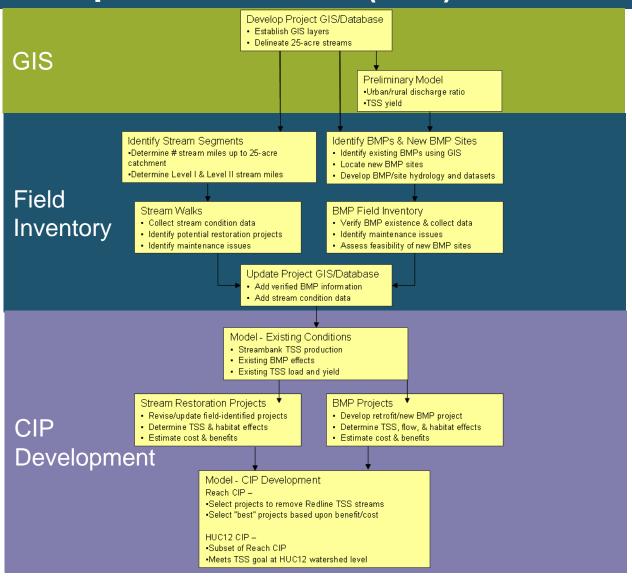
Gwinnett County: County-Wide Watershed Protection Plan

Watershed Protection Plan Outlined Three Strategies

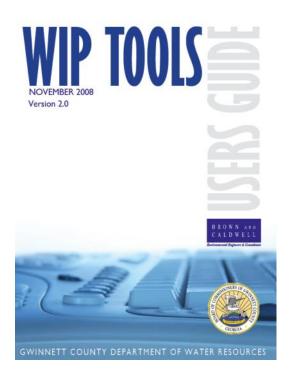


- New development and redevelopment requirements
- Improving affected areas
- Supporting activities to improve watersheds
- Meeting NPDES/TMDL Regulatory Requirements

Gwinnett County: Watershed Improvement Plans 2001–2010

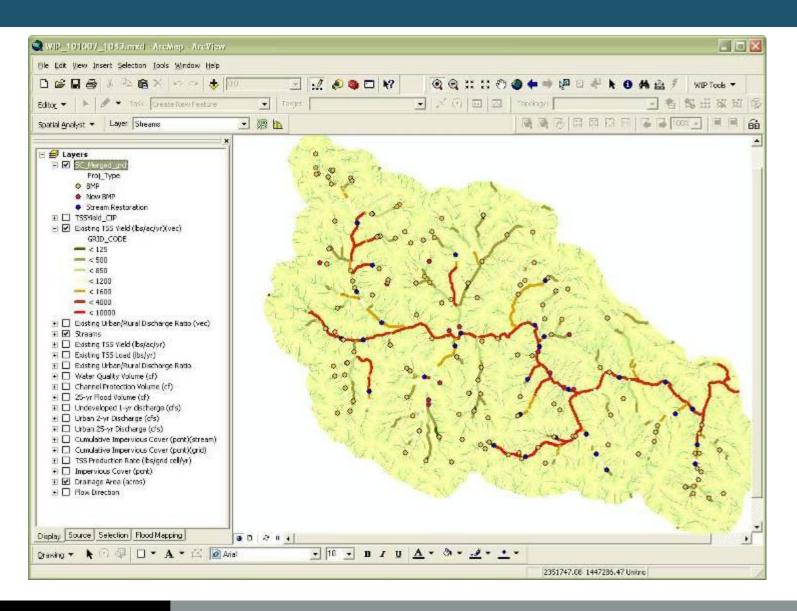

- Stream Walks
- BMP Inventory
- GIS WQ Modeling
- CIP Development

BC completed WIPs for 60% of County ~ 300 sq. miles.

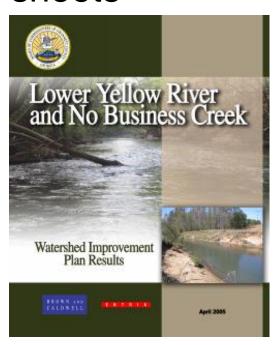


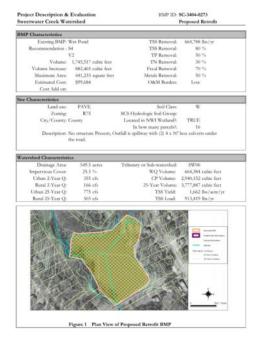
Watershed Analysis Using BC's GIS Based Watershed Improvement Plan (WIP) Tools

TSS
TN
TP
BOD
FC
Others



WIP Tools Overview


- Grid based, flow accumulation GIS model
- Develops hydrologic and water quality baseline conditions
- Evaluates stream restoration and best management practices (BMPs)
- Predicts improvements from projects based on baseline conditions
- Estimates in-stream erosion and pollutant loadings in addition to loadings from the contributing watershed
- Tool to develop CIP list in order to meet TSS loading goals for the County


WIP Tools Modeling / CIP Development

Gwinnett County: Project Report and Project Summary Sheets

- Overview of inventory results: BMPs and Streams
- Recommended CIP and costs: Reach and HUC-12
- Study area maps by subwatershed and project sheets

Lake Claiborne Restoration Project

- Identified as BMP retrofit in the WIP – determined to need an outlet control structure and additional water quality and channel protection volume storage
- Lake silted in due to upstream development
- Homeowner complaints
- County-owned parcel

Lake Claiborne – 1972 and 2007

Lake Claiborne Restoration

- 2 tribs, 600 acre developed watershed
- 5 acre lake
- Water depth = <1-5 ft</p>
- Filled sediment thickness 1-4 ft
- ~40,000 cy sediment
- 2 wetlands delineated

Completed Survey and Sediment Measurement and Testing

Sediment Testing Results

Grain Size																				
Sample				Soil	As R'cd	Atterberg Limits		Distribution			Compaction							Additional		
Identification		Sample	Sample	Classi-	Moisture			% Finer	% Finer	% Finer	Maximum	Optimum		Unit W	Veight	Permeability	Organic	Tests		
Borehole Sample		Type	Depth	fication	96			No. 4	No. 200	.005	Dry Density	Moisture	Gs	Moisture	Dry	(cm/sec)	Content	Conducted		
Number	ID					L.L.	P.L.	P.I.	L.I.	Sieve	Sieve	mm	(lb/cuft)	96		96	(lb/cuft)		96	(See Notes)
NEP-1	сомво	Bulk	1.0-7.0'	ML	44.9	32	27	5	3.52	99.4	64.2	-	103.7	17.7		-	-		-	,
NEP-1	NEP-1-1	Bag	1.0'	(ML)	45.4	,	,	,	-	100.0	58.2	•	-	-	,	45.4	73.5	,	5.7	,
NEP-1	NEP-1-3	Bag	3.0'	(ML)	51.7	-	-	-	-	99.8	75.1	-	-	-	-	51.7	67.7	-	6.8	-
NEP-1	NEP-1-6	Bag	6.0'	(ML)	50.1	-	-	-	-	99.2	64.2	-	-	-	-	50.1	70.7	-	5.9	-
NEP-1	NEP-1-7	Bag	7.0'	(ML)	33.6	-	-	-	-	98.5	51.9	-	-	-	-	33.6	88.1	-	3.4	-
NEP-2	сомво	Bulk	1.0-4.0'	ML	52.1	41	34	7	2.74	99.9	80.3	-	100.8	15.1	-	-	-	-	-	-
NEP-2	NEP-2-1	Bag	1.0'	(ML)	82.0	-	-	-	-	100.0	86.9	-	-	-	-	82.0	50.8	•	6.9	-
NEP-2	NEP-2-4	Bag	4.0'	(ML)	28.1	-	-	-	-	99.9	70.0	-	-	-	-	28.1	92.5	-	2.6	-
NWP-1	сомво	Bulk	1.0-5.0'	ML	43.6	36	29	7	2.09	100.0	78.6	-	99.1	20.4	-	-	-	-	-	-
NWP-1	NWP-1-1	Bag	1.0'	(ML)	58.9	-	-	-	-	100.0	81.5	-	-	-	-	58.9	62.0	-	8.4	-
NWP-1	NWP-1-5	Bag	5.0'	(ML)	29.1	-	-	-	-	100.0	67.7	-	-	-	-	29.1	91.4	-	2.3	-
NWP-2	сомво	Bulk	1.0-7.0'	CL-ML	29.7	27	21	6	1.51	99.6	62.5	-	109.8	14.8	-	-	-	-	-	-
NWP-2	NWP-2-1	Bag	1.0'	(ML)	30.0	-	-	-	-	99.5	69.0	-	-	-	-	30.0	89.3	-	4.1	-
NWP-2	NWP-2-2	Bag	2.0'	(ML)	30.1	-	-	-	-	99.6	60.1	-	-	-	-	30.1	89.2	•	2.6	-
NWP-2	NWP-2-7	Bag	7.0'	(ML)	28.3	-	-	-	-	99.7	72.4	-	-	-	-	28.3	92.5	•	1.9	

ABBREVIATIONS: LIQUID LIMIT (LL)

PLASTIC LIMIT (PL)
PLASTICITY INDEX (PI)
LIQUIDITY INDEX (LI)
SPECIFIC GRAVITY (G₀)
MOISTURE (Mc)

NOTES: T = TRIAXIAL TEST

U = UNCONFINED COMPRESSION TEST

C = CONSOLIDATION TEST DS = DIRECT SHEAR TEST O = ORGANIC CONTENT

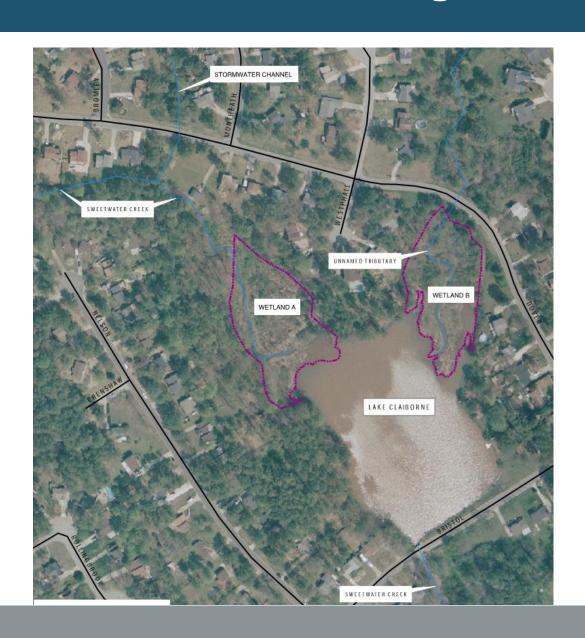
P = pH

* = one point proctor

Prefer to analyze incremental sediment depths.

Pre-construction Monitoring

- Water Quality Sampling
 - High bacteria, high TSS during storms, high nitrogen, low DO
- Habitat Assessment
 - Suboptimal
- Benthic macro-invertebrate assessment
 - -Poor
- Geomorphic measurements
 - Aggraded, high organics, backwater effects


Developed Concept Plan and Bidding Documents

- 1,200 LF stream restoration
- 2 off-line sediment ponds
- Double 6'x6' CBC on trib
- 13,000 plants
- Created submerged island
- Removed 40,000 cy
- Water depth = 5-9 ft
- New outfall with operable gate; lowered NWL 0.9 ft; additional flood protection
- Walking trail
- Restocked fish

Lake Claiborne Restoration - Permitting

- Two wetlands delineated – each ~1.2 acres
- Located within original footprint of the lake
- Aggraded areas of lake
- Two streams –1,590 If
- NWP 43 and 27

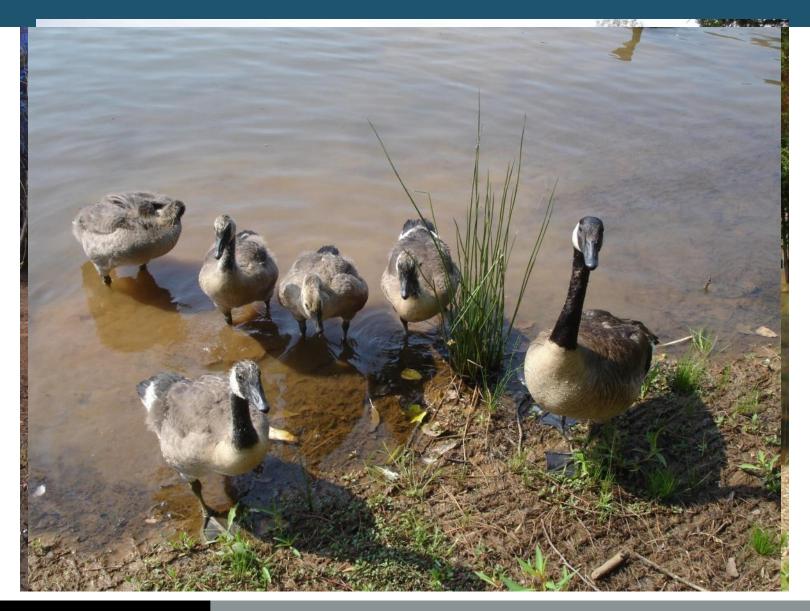
Contractor Elected to Dewater and Excavate

Issue - Discharge Water Turbidity Control

Polymer addition.

Filter bag.

Minor issue with hauling of wet sediment. Dump truck incident.

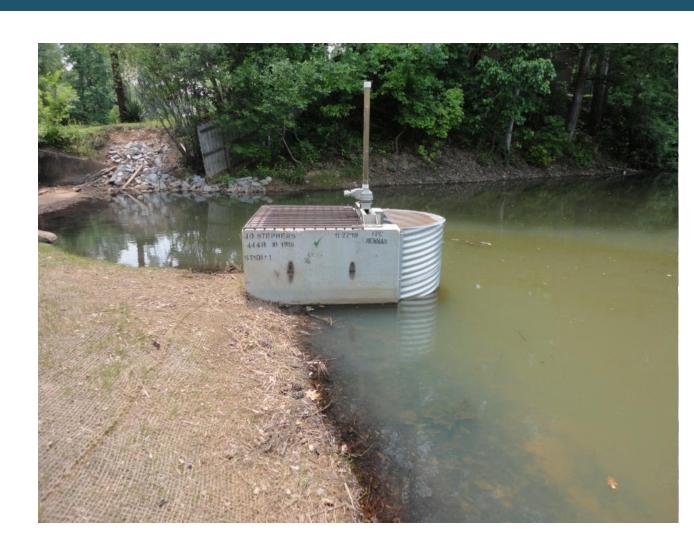

Lake Claiborne Restoration

Lake Claiborne Restoration

Construction

Lake Claiborne Restoration

- Removes 442,043 lbs/yr TSS
- Completed in 6 months
- \$1.2M Construction Cost
- \$3.68/lb TSS
- County average cost per pound is \$10/lb TSS
- Homeowners happy
- Will monitor for WQ and habitat improvements


Post-Construction Monitoring

- Vegetation
- Water Quality
- Macro Invertebrates
- Habitat
- Geomorphology

Urban Restoration Issues

- Easements
- Traffic
- Utilities
- Trash and Debris
- Maintenance
- Downstream
- Neighbors

Brown AND Caldwell

advancing*innovation™