Integrated Modeling Framework for Forecasting Ecosystem Services

Stephen Faulkner USGS Leetown Science Center Kearneysville, WV

NCER August 1, 2011

Bogdan Chivoiu Wylie Barrow USGS Lafayette, LA

Joseph Quansah Tuskegee University, AL

John Tirpak USFWS, Vicksburg, MS

Key Points

- Ecosystem services provide a common framework for decision-making, evaluating trade-offs
- Understanding the relationships between natural and anthropogenic drivers and ecosystem services is fundamental
- Need a spatially explicit, empirically based approach to quantify multiple services under alternative scenarios

Defining the Problem

Defining the Problem

- The conditions and processes through which natural ecosystems, and the species that make them up, sustain and fulfill human life (Daily, 1997)
- The benefits people obtain from ecosystems (Millennium Ecosystem Assessment, 2005)
- The transformation of a set of natural assets (soil, biota, air, water) into things that we value (goods) (Binning et al. 2001)
- Final ecosystem services are components of nature, directly enjoyed, consumed, or used to yield human well-being (Boyd and Banzhaff 2007)

Decision-relevant science to facilitate incorporating science into decision making

Adapted from Daily et al. 2009

Adapted from Carpenter 2009

Ecosystem Services – Key Research Needs

Effects of scale on services and interactions

Optimization/Maximizing/Targeting – who, what, when?

Evaluating ecological trade-offs

Incorporating climate-change effects

Articulating these issues and solutions across a range of stakeholders

Ecosystem Services Integrated Modeling Framework

Applied Science Goal: Develop predictive capability to model/evaluate scenarios and impacts

Ecosystem Services Integrated Modeling Framework

- Carbon sequestration
- Wildlife habitat amphibians waterfowl neotropical migrant birds
- Water quality erosion reduction/sediment retention nitrate retention

Ecosystem Service: Wildlife Habitat

Swainson's warbler

- Neotropical migrant
- Habitats
 - Mature bottomland hardwoods
 - 7-10 year old pine stands
- High small stem densities
 - Mean = 34773 stems/ha
- Large forest blocks
 - >4500 ha
- Density SI
 - SI₁: Landform, forest type, age class
 - SI₂: Forest patch size
 - Sl₃: Proportion forest in 1-km radius
 - SI₄: Small stem density (stems/ha)

Model Habitat Suitability

Age Class

Landform	Forest type	Grass-Forb	Shrub-Seedling	Sapling	Pole	Saw
Terrace/Mesic	Transitional/Shrubland	0.000	0.000	0.200	0.000	0.000
	Deciduous		0.000	0.200	0.500	0.600
	Evergreen		0.000	0.000	0.000	
USGS	Mixed		0.000	0.000	0.000	
	Woody Wetlands		0.000	0.400	0.800	0.800

Spatially Explicit Habitat Suitability

Swainson's Warbler

science for a changing world

Soil Water Assessment Tool (SWAT) modeling inputs and process

DEM - streams/reach/

outlets/subbasins/slope

hydrologic processes

Landuse - NASS /NLCD2001

Soils - SSURGO

Hydrologic Response Units (HRU)

Flow -

Model Input edits

Model Simulation, **Calibration and Validation**

🖸 🏊 💦 Networ

Edit SWAT Input V SWAT Simulation V

Rup SWAT

Set Default Simulation

Sensitivity Analysis

Auto Calibration and Uncertainty Analysis

Ecosystem Services Model

Run

Graphic Outputs

Model Application: Quantify Impact of Conservation Practices on Water Quantity and Quality

Assessment of WRP Impact on Water Quality – Tensas Basin

Simulation Period

2000 WRP/Wetland Scenario

• • • 2005 WRP/Wetland Scenario

Ecosystem Model Application: Forecasting Climate Change Impacts

Scenario A: Restore cropland to native forests and wetlands

Scenario B: Climate change shifts land cover types

Simulation	of site: Louis	siana WRP2 – S	cenario: 1	Years: 100					
Forest Comp	positio <mark>n:</mark> Nutt	all Oak - Wil:	low Oak 100						
Active mana	agement: No 🤆	Connectivity 1	evel: Min			Climata Cl		ontotion	
							nange Au	aplation -	
						P	ine Fores	:t	
Bird Specie	es Richness					•			
Start	End	%Change	Average						
9.8	14.5	48	12				enects		
Carbon Sto	cks [Mg/ha]								
Start	End	%Change	Average						
47.9	79.3	66	59.9						
Duck Energy	y Days /ha								
Start	End	%Change	Average						
210	512	144	352						
Nitrate Ret	tention [kg/ha]								
Start	End	Change	Average						
1.9	3.3	1.4	2.6	Simulation	of site: Louis	i ana WRPZ S	cenario: 1	Years: 188	
Frog Occupa	ancy Rate			Forest Comp	osition: Nutt	all Oak - Wil	low Oak 60% D	Loblolly Pine 40%	
Start	End	%Change	Average	Active mana	gement: No C	onnectivity 1	evel: Min		
0.32	0.49	52	0.39						
Soil Erosid	on Potential [M	[g/ha/yr]							
Start	End	Change	Average	Bird Specie	s Richness				
1.5	0	-1.5	0.7	Start	End	%Change	Average		
				9.82	19.3	96	13.8		
				Carbon Stoc	ks [Mg/ha]				
				Start	End	%Change	Average		
				47.9	184.3	285	101		
				Duck Energy	Days /ha				
				Start	End	%Change	Average		
				203	517	154	361		
				Nitrate Retention [kg/ha]					
				Start	End	Change	Average		
				1.9	4.6	2.7	3.2		
				Frog Occupa	ncy Rate				
				Start	End	%Change	Average		
				0.32	0.61	93	0.46		
	200			Soil Erosio	n Potential [M	g/ha/yr]			
\approx				Start	End	Change	Average		
				1.5	0	-1.5	0.4		
science for a cl	hanging world								

Pine Forest Climate Change Scenario

Applied Science . . .

Questions?? faulkners@usgs.gov