
Urban Conservation and Coastal Wetland Planning

Assessment and Planning for the John Heinz National Wildlife Refuge in Philadelphia, PA

Dan Salas, Ecologist Cardno JFNew

Location

- Pennsylvania's last and largest (80%) intact freshwater tidal marsh.
- Major stop-over for the Atlantic Coast/Delaware River migratory flyway.
- 4th largest metropolitan area in the U.S.
- 350 years of European settlement and influence – one of oldest settlements in the U.S.

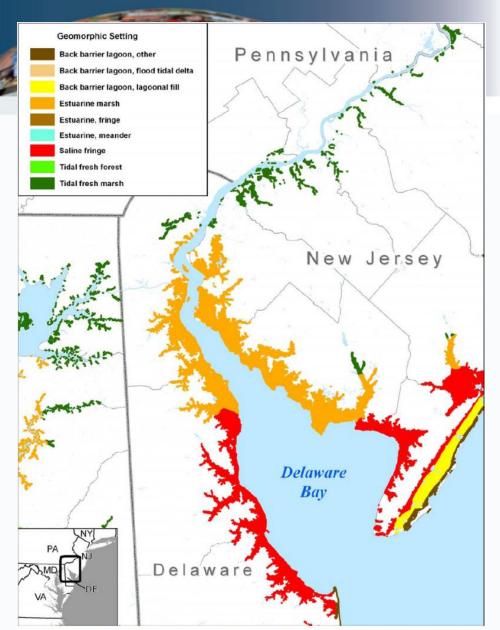


Figure 2.1.7. Geomorphic Settings for the Delaware Bay Region. Source: Titus et al. (Section 2.2).

From Reed, D.J., et.al. 2008.

U.S. Fish & Wildlife Service

Philadelphia, Pennsylvania

John Heinz National Wildlife Refuge at Tinicum

- 20 distinct ecological community types identified
- Mix of freshwater tidal marsh, non-tidal wetlands, riparian forests, and grasslands/meadows
- Managed by USFWS since 1972.

Planning Goals

- Preparation of the Comprehensive Conservation Management Planning (CCP) (15-Year Strategic Plan).
- Identify restoration opportunities on refuge lands that address regional conservation concerns.
- Create a plan and process that was <u>usable</u> to USFWS and <u>understandable</u> to the general public.

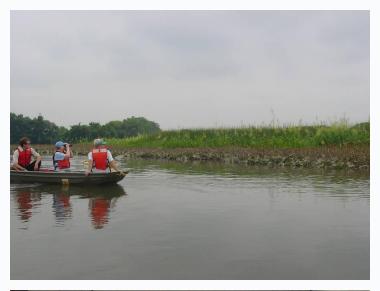


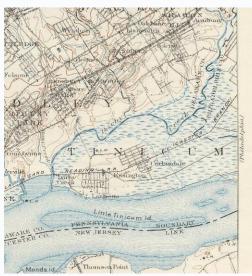
Image from L. Woodward, USFWS

Planning Process

Issues/Concerns

- Over-abundant Deer Populations
- Invasive Species
- Climate Change Adaptation
- Biological Connectivity
- Degraded Water Quality
- Spill Prevention and Response
- Contaminants
- Loss of Biological Integrity and Reference Condition
- Habitat Use and Restoration Conflicts
- Compatible Public Uses
- Environmental Education and Interpretation Focus

Common reed (Phragmites australis) dominated tidal marsh.


High deer population numbers have led to habitat degradation. Photo: L. Woodward, USFWS

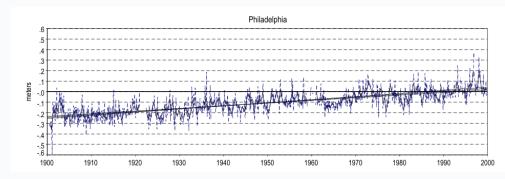
Wetland History


- Several maps of area and surrounding lands from as early as 1757.
- Written accounts of area history and site-specific history were previously completed.

USGS Topographic Map 1898, reprinted 1930

Philadelphia Baltimore RR, 1850

Map of Philadelphia and Surrounding Areas, 1757


Wetland History

20th Century site specific details well documented from previous reports.

- 1900+ Dike repairs and maintenance.
- 1930's Marsh ditching for mosquito management.
- 1950's-1960's Dredge and fill operations associated with I-95 and PHL.
- Post 1970 Additional species introductions.
- Ongoing Sea level rise.

McCormick, et. al. vegetation surveys and community types, 1968

Freshwater Tidal Marsh Major Concerns

- Climate Change
 - Sea Level Rise
 - Changes in Salinity
 - Species Introduction/Migrations
 - Extreme Weather
- Invasive Species
 - Phragmites
- Surrounding Land Use
- Inherent Complexity of Restoration
 - Site Constraints
 - Critical Elevations

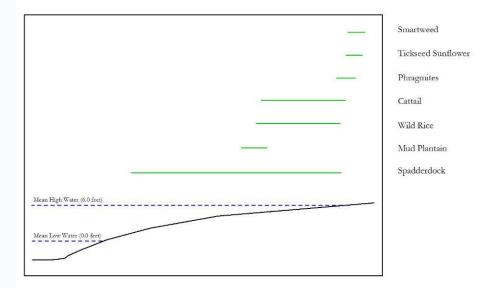
Views across freshwater tidal marsh.

Marsh Field Surveys

- Utilized a combination of survey transects, canoe meander inventories, and Bing Maps.
- Combined ground elevation surveys with vegetation composition and dominance.

Vegetation/marsh elevation survey in reference area of marsh.

Transition from Zizania, to Peltandra, to open water.


Iohn Heinz National Wildlife Refuge at Tinicum Ecological Community Assessment Data

Field Survey Results

- 113 plant species identified (not an exhaustive survey)
 - 73% native species
 - 12% exotic (but not invasive)
 - 15% invasive and exotic
- Compiled data into Excel database to compare densities, distribution, and develop prioritization for management.

Excerpt from vegetation database.

	M	Sub		Targe	Target	Glo	State	Vegetation	Enviro	Ecolog	~			Tree	Tre	es and	Relativ	ve Dens	sity	\$	Shru	
e	Mgmt Unit ID	ub Unit ID	Sheet ID	Target Association Type	Community ID	Global Ranking	te Ranking	tion Structure	o Conditions	Ecological Influences	Observer	Date	Tree Cover	Tree Height (ft.)	Dominant	Abundant	Frequent	Occassional	Rare	Shrub Cover	Shrub Height (ft.)	
6	lmpndmnt Dike	IMSA1	H1	Salix nigra Temporarily Flooded Shrubland	CEGL006065	GNR		Open canopy	Floodplain		Williams, D	11/9/2005	20%	40		BWI	SIM; BOE			1%	6	
	Impndmnt Dike	IMAC2	H2	Acer saccharinum - Acer negundo / (Elymus virginicus) Forest	CEGL006217	G4		Open canopy with marsh	Wetland forest and floodplain	Old tide gate channel	Williams, D	11/9/2005	15%	40		SIM; BWI	BOE		REM	1%	5	
1	Impndmnt Dike	IMSA2	нз	Salix nigra Temporarily Flooded Shrubland	CEGL006065	GNR		Tidal marsh and forest	Old Darby channel and floodplain	Abandoned channel	Williams, D	11/9/2005	5%	40	BWI					1%	6	
	Impndmnt Dike	імні	H4	Typha angustifolia - Hibiscus moscheutos Herbaceous Vegetation	CEGL004201	GNR	SNR	Open canopy with marsh	Floodplain and dike		Williams, D	11/9/2005	10%	40	BWI			REM	SIM; BLL	0%	0	1
	SR420 West	SWUN1	SR420 West	Unidentified cool season grass meadow	N/A	GNR	SNR	Meadow w/ occassion al shrubs	dike berm and pipeline ROW	pipeline ROW	Salas, D	11/9/2005	1%	20					AMS	10%	6	
	SR420 West	SWAC1	SR420 West	Acer saccharinum - Ulmus americana - (Populus deltoides) Forest	CEGL002586	G4	SNR	Early succession al forest	south of ROW	near L95 ramp	Salas, D	11/9/2005	90%	40			BLL	BWI; SIM; AME; MUL		5%	6	
	SR420 West	SWAC2	SR420 West	Acer saccharinum - Ulmus americana - (Populus deltoides) Forest	CEGL002586	G4	SNR	Early succession al forest	north of ROW	near I_95 ramp	Salas, D	11/9/2005	80%	30		BOE	SIM	BLC; MUL	AME	10%	6	
	SR420 East	SEAC2	SR420 East	Acer negundo Forest	CEGL005033	GNR	SNR	mixed phragmites wetland and forest	fill from I-95 construction	near L95 ramp	Salas, D	11/9/2005	60%	70			BOE; SIM; MUL;	BWI		5%	6	
	SR420 West	SEAC1	SR420 East	Acer saccharinum - Ulmus americana - (Populus deltoides) Forest	CEGL002586	G4	SNR	mixed wetland and forest	fill from 1-95 construction		Salas, D	11/9/2005	60%	70			BOE; SIM; MUL;	BWI; BLC;	AMS; AIL; HNL; WHO; WLO; CRA	5%	6	
	SR420 East	SESA1	SR420 East	Salix nigra Temporariliy Flooded Shrubland	CEGL006065	GNR	SNR	forested wetland	fill from I-95 construction		Salas, D	11/9/2005	80%	70	BWI			SIM		0%	0	

Species composition as related to marsh elevations on site.

Restoration Prioritization

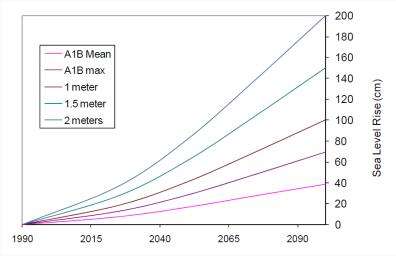
- 1) Freshwater Tidal Marsh
- 2) Coastal Plain/ Floodplain Forests
- 3) Open Water and Mudflats
- 4) Upland/Riparian Grasslands

Prioritization based on:

- 1) Global/state conservation status rankings.
- 2) Existing ability to support species of conservation concern or endangered resources.

Photo: King rail, USFWS

Table 3-4. Priority Habitats and Their Potential Limiting Factors at John Heinz NWR


Habitat Type	Reasons for Priority Ranking	Limiting Factors/Threats			
	Highest Priority Habitats				
Freshwater Tidal Marsh	Supports a globally rare and regionally endangered plant community (ranked \$1/G3); supports federal trust fish and wildlife species, state listed endangered species as well as many other species labeled as high priority species in BCR 30 and State Wildlife Action Plan. Last intact example of unique remnant natural community in state of Pennsylvania. Supports wetlands, a federal trust resource, and original purpose of Refuge.	Altered hydrology; water quality degredation and contamination; invasive species; sea leve rise.			
Coastal Plain Forest	Supports a globally rare and regionally endangered plant community (ranked S1/G3); Important habitat for species labeled as priority species in BCR 30. Supports wetlands, a federal trust resource, and state endangered species.	Excessive deer browse; invasive species;			
Floodplain Forest	Important habitat for species labeled as priority species in BCR 30 and unique community (ranked S1/G3). Supports wetlands, a federal trust resource, and state endangered species.	Excessive deer browse; invasive species;			
Impoundment/Open Water	Important habitat for species labeled as priority species in BCR 30 and as a foraging stopover along Atlantic flyway. Supports wetlands, a federal trust resource, and original purpose of Refuge.	Requires intensive management and maintenance for optimal ecological benefits; invasive species; inadequate water control structure for water level manipulation			

SLAMM Analysis

- Modeling Loss/Alteration of Freshwater Tidal Marsh
 - Measured historic SLR rate = 2.79mm/year
 - Projections for SLR
 - A1B = 4mm/year (0.21-0.48mm/year) (IPCC 2007)
 - Upper Limit = 9.0-13.0 mm/year (Grinsted et. al. 2009)
 - Measured average accretion rates in Delaware Estuary are 4mm/year.
- Predicts loss rate of 15% to 92% for tidal marsh once scenarios exceed 0.39 meters of eustatic SLR.
- Some updated data available revised analysis coming soon.

Climate change scenarios and sea level rise projections utilized in the John Heinz NWR SLAMM analysis. From Clough, J.S. and Larson, E.C. 2009.

SLR by 2100 (m)	0.39	0.69	1	1.5	2
Undeveloped Dry Land	12%	25%	41%	57%	64%
Tidal Fresh Marsh	-1%	5%	16%	39%	68%
Inland Fresh Marsh	-1%	0%	2%	3%	4%
Tidal Swamp	3%	13%	22%	36%	66%
Developed Dry Land	1%	4%	9%	20%	35%
Inland Shore	28%	38%	79%	88%	93%

Predicted Loss Rates of Land Categories by 2100 Given Simulated Scenarios of Eustatic Sea Level Rise

Moving Forward

- Monitoring for sea level rise and marsh accretion.
- Detailed topographic surveys and plant community analysis
- Setting up long-term monitoring stations.

Fresh deposition on marsh surface.

Long-term monitoring will be critical to SLR adaptation.

Photo: L. Woodward, USFWS

Moving Forward

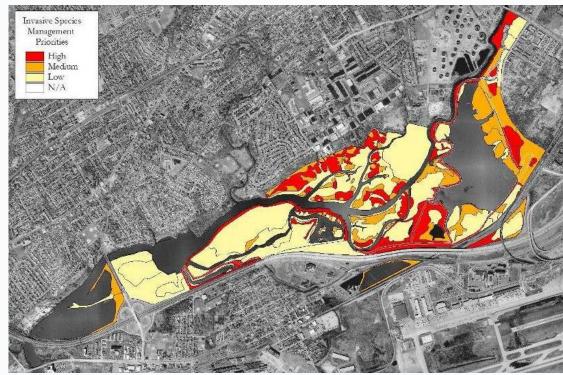
Control Invasive Exotic Species

- Preserve intact communities first.
- Eradicate small populations next.
- Control larger colonies.

Figure 5. Quadrat Displaying Invasive Species Control Prioritization Rationale

<u>Hiah</u>	<u>Medium</u>					
Intact Community/	Impacted Community/					
High Potential for New Invasion	Moderate Potential for New Invasion					
<u>Medium</u>	Low					
Intact Community/	Impacted Community/					
Moderate Potential for New Invasion	Low Potential for New Invasion					

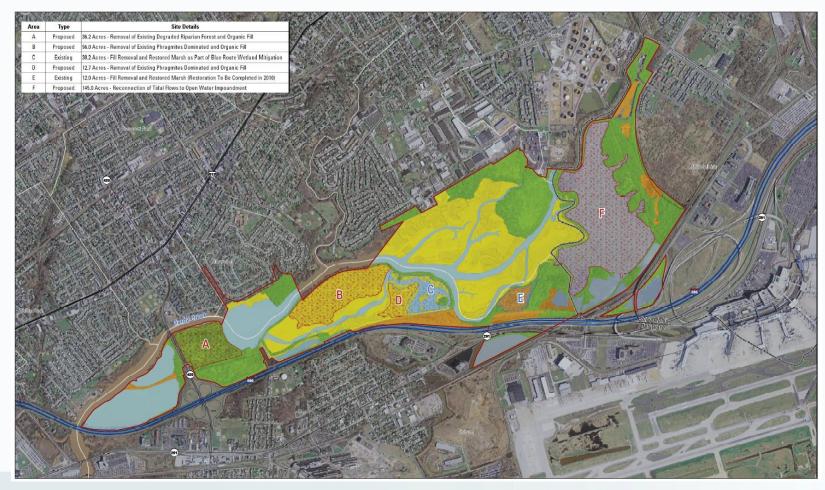
Table 2. Prioritized List of Invasive Species


Species	Ranking	Impact	Extent	Management Difficulty	Control Priority and Focus		
Mile-a-minute Polyganum perfoliatum	1	•	0	0	High		
Japanese knotweed Polyganum cuspidatum	2	•	0	•	Eradicate Localized Occurrences		
Porcelainberry Ampelopsis brevipedunculata	3	0	0	0	Prevent New Introductions		
Common Reed Phragmites australis	4	•	0	•			
Purple Loosestrife Lythrum salicaria	5	•	0	•	Medium		
Japanese honeysuckle Lonicera japonica	6	•	0	•	Reduce Size of Existing Populations		
Norway maple Acer platanoides	7	0	0	•	Eradicate Localized Occurrences		
Oriental bittersweet Cephalanthus orbiculatus	8	0	0	0			
Japanese stiltgrass Microstegium vimeneum	9	•	•	0			
Tree-of-heaven Ailanthus altissema	10	0	0	0			
Japanese hops Humulus japonica	11	0	0	0	Low		
Bush honeysuckle Lonicera maackii	12	0	0	0	Focus Primarily on		
Garlic mustard Allaria petiolata	13	•	•	•	Smaller Populations (<0.5 Ac) or Areas of Conservation		
Multiflora rose Rosa multiflora	14	0	0	0	Significance		
Reed canarygrass Phalaris arundicea	15	0	0	0	Remove as Warranted with Control of Higher Priority Species		
European privet Ligustrum arvense	16	0	0	0			
Mugwort Artemesia vulgaris	17	0	0	0			

O = Medium ○ = Low

Restoration Prioritization

- Management units divide the refuge into manageable components to guide staff and volunteers.
- Invasive species were prioritized based on ecological impact, distribution, and management difficulty.
- Combination of all variables yielded management priorities for each management unit and subcomponents.



Marsh Restoration

Other Information Available

2005 Restoration

Management Plan

Restoration Management Plan For the Lower Darby Creek

with recommendations for the John Heinz National Wildlife Refuge at Tinicum

DELAWARE RIVERKEEPER® NETWORK

May 2006

Sept/Oct 2008 Journal of Ecological Restoration

SPECIAL THEME: URBAN ECOLOGICAL RESTORATION

Developing an Ecological Restoration Management Plan: John Heinz National Wildlife Refuge, Philadelphia

Dan J. Salas

ABSTRACT

Planning is the first step toward efficient ecosystem restoration. Friends of the John Heinz National Wildlife Berdage near Philadelphia. Personyania view saverdef dunning through the National Film and Wildlife Gundarbory Delaware Eduary Grant Program to develop a restoration plan for the lower reaches of Darby Creek, which runs through the refuge. Managed by the U.S. Fish and Wildlife Service, the refuge was established by an act of Congress in 1972 to protect the last 81 hoctases of Testiwater tald annamin hermonyhania. The Delaware Reviewer Perkovit was hind in 2005 to carry out an integrated planning effort. The resulting *Restoration Management Plan for the Lowe Darby Creek*, completed in May 2006, combined historical research, aveil aphoto and may analysis, personal interview, stakeholder feedback, field research, and data management. The creation of the plan offers a case study to inform other restoration planning efforts for large, diverse areas.

Key words: Delaware Riverkeeper Network, Heinz National Wildlife Refuge, restoration planning and prioritization, urban ecological restoration

shelf." Much of the plan consists of ocated near the southwest bound-Riverkeeper Network, Dan Salas, David M. Williams, and Richard C. ⊥ary of Philadelphia, Pennsylvania, "management unit profiles" detailing the John Heinz National Wildlife Albert, reviewed existing restoration recommendations and prioritization Refuge at Tinicum harbors roughly planning documents for other large-scale, multiuse sites with a range of intent was that these should stand 405 hectares of freshwater tidal and nontidal wetlands, rivers, streams, ecological conditions (Horwitz et al. alone as guidance documents for land 1999, Meyers-Rice and Tu 2001). We also looked at guidance documents implementation. The emphasis of the upland grasslands, and mixed hardwood forests near the confluence of Darby Creek and the Delaware River. on ecosystem assessment and restora-tion planning (Morse et al. 2004). Many plans for large sites offer genplan was not only on accurately char In 2005, the National Fish and Wildacterizing the ecological issues of the life Foundation awarded funding to site, but also providing specific practhe nonprofit support group Friends eral conclusions about the types of tices for dealing with these issues. We of the Heinz Refuge to develop a res-toration management plan for lower management actions required, but lack specific guidance on where these directly impacting the refuge (such as Darby Creek. Friends of the Heinz should occur and what areas are of urbanization, watershed-based pollu-Refuge hired the Delaware Rivergreatest importance. Our goals were to develop a plan that would be *usable* ductions, and sea level rise). Reviewing keeper Network, a regional nonprofit organization that had successfully to all parties involved in management: myriad degradation issues on a large, completed several watershed plans and land managers, laborers, volunteers, and funders. We also aimed to provide managers, and we were committed restoration projects in the region. In preparation for this task, the a detailed and prioritized assessment to providing specific and achievable management actions. plan authors and staff of the Delaware of the site's greatest ecological issues, along with management alternatives Whether focused on 0.5 or 10.000 Ecological Restoration Vol. 26, No. 3, 2008 that would support decisions on where hectares, restoration efforts almost ISSN 1522-4740 E-ISSN 1543-4079 and what actions should occur. always face fiscal and labor shortages ©2008 by the Board of Regents of the University of Wisconsin System. We kept in mind the idiom that a relative to a site's needs. A final objecplan is only useful if it is taken off the tive of the plan involved identifying

246 ♥ September 2008 ECOLOGICAL RESTORATION 26:

http://www.fws.gov/northeast /planning/John%20Heinz/ccph ome.html

Questions and Comments

Dan Salas, Ecologist

Cardno JFNew 403 Venture Ct., Unit 7 Verona, WI 53593

Phone: 608.848.1789 Email: dan.salas@cardno.com

References:

Clough, J.S. and Larson, E.C. 2009. *Application of the Sea-Level Affecting Marshes Model (SLAMM 5.1) to John Heinz NWR* Warren Pinnacle Consulting. Warren .VT. 71 pp.

IPCC, 2001: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [Houghton, J.T., Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K.Maskell, and C.A. Johnson (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 881pp.

McCormick, J. Grant, R. Patrick, R. 1970. *Two Studies of Tinicum Marsh*. The Conservation Foundation.124 pp.

Reed, D.J., D.A. Bishara, D.R. Cahoon, J. Donnelly, M. Kearney, A.S. Kolker, L.L. Leonard, R.A. Orson, and J.C. Stevenson. 2008. *Site-Specific Scenarios for Wetlands Accretion as Sea Level Rises in the Mid-Atlantic Region. Section 2.1 in: Background Documents Supporting Climate Change Science Program Synthesis and Assessment Product 4.1*, J.G. Titus and E.M. Strange (eds.). EPA 430R07004. U.S. EPA, Washington, DC.