Setting Restoration Targets in Florida Bay Using Paleoecology and Salinity/Hydrology Models

Session: Estuarine Ecosystems Restoration

4th National Conference on Ecosystem Restoration Estuarine Ecosystems Restoration Session August 5, 2011

> Frank Marshall, CLF Lynn Wingard, USGS Patrick Pitts, USFWS

Study Area Everglades Ecosystem

- Globally unique combination of hydrology and water-based ecology
- Freshwater wetlands directly connected to estuaries connected to:
 - Atlantic Ocean
 - Florida Straits
 - Gulf of Mexico
- i.e. hydrology and salinity are tightly coupled to each other and to the ecology

Study Area Everglades Ecosystem

- Anthropogenic impacts due to water management:
 - Reduced flows
 - Reduced hydroperiods
 - Higher salinity regimes and increased occurrence of hypersalinity
 - Impacted ecosystems
- Remains of (altered) natural system are 'protected' in Everglades National Park – our Study Area
- Goal of Everglades restoration: restored hydrology, salinity and resultant water-based ecosystem

Overview of Study Area

The Problem – Freshwater Diversion From the Everglades

Current Flow

SOURCE: WWW.EVERGLADESPLAN.ORG

SOURCE: WWW.EVERGLADESPLAN.ORG

Important Features for This Study

Flow is key parameter in management of water in south Florida

Current Status of Paleosalinity Analyses in Florida Bay

- 5 sediment core analyses in Florida Bay completed over last 5 years:
 - Whipray Basin
 - Rankin Lake
 - Taylor T24
 - Russell Bank
 - Crocodile Point
- Synthesis of all 5 analyses was recently completed
- Funded has been provided by:
 - RECOVER
 - USGS
 - ENP

Detailed Paleosalinity Procedure

See Jan 2009 Estuaries And Coasts

Florida Bay Paleoecological Data -USGS Sediment Cores

Paleoecology Characterization

- Mollusks from core are identified and counted
- Salinity of fauna based on modern analogue data
- CONFIDENT Estimate: 36 taxa, ten or more observations, 95% CI of less than 5
- FULL Estimate: 36 taxa from CONFID + additional 35 taxa with any associated salinity data.

System of Hydrology/Salinity Regression Models

- Includes models for salinity, stage, and flow
- Trend in data (sea level rise, other effects) included where significant
- Flow models now include power terms
- Updates for synthesis produced a more robust system of hydrology/salinity models

Cal/Ver Plots – Updated Stage Models

Cal/Ver Plots – Salinity Models

Cal / Ver Plots – Updated Flow Models

Start w/Salinity - Mean Salinity

Paleo = circa 1900 = Pre-drainage

			Hydrology		
			model-		
			based	Paleo	Paleo
Core	Time Step	Observed	salinity	FULL	CONFID
Whipray					
Basin	Daily	36.4	31.9	30.6	29.5
Rankine					
Lake	Daily	35.2	30.4	28.3	28.3
Taylor T24	Daily	24.2	17.7	16.5	8.5
Russell					
Bank	Monthly	33.5	28.1	28.5*	26.4*
Crocodile					
Point	Monthly	33.2	27.6	28.8	26.5

* distance adjusted

Why Circa-1900 Salinity?

Products For Each of the 5 Analyses

- Paleo-based stage throughout freshwater marshes and mangrove zone (12 stations)
- Upstream paleo-based flow (Shark River, Taylor River)
- Downstream paleo-based creek discharges (5 creeks)
- Paleo-based salinity throughout Florida Bay (17 stations)

Synthesis of Output

- Output of all 5 analyses combined
- Optimal Linear Combiner methodology
- Output from each model weighted by Mean Squared Error (MSE) from cal/ver run
- Then they are combined (summed)
- Synthesized output: single time series for all parameters using information from all 5 analyses

CP Stage MSE Optimal Linear Combiner Procedure

			(CPMSEtotal/		
			СР		
			MSE)/SUM(<mark>CP</mark>		
		CPMSEtotal/C	MSEtotal/CP	CONFID	
Core Label	CP MSE	P MSE	MSE)	Cppaleo avg	ColD * ColE
Whipray Basin	0.12	24.53	0.31	2.07	0.64
Rankine Lake	0.07	38.96	0.49	1.85	0.90
Taylor T24	1.78	1.64	0.02	2.11	0.04
Russell Bank	0.29	10.13	0.13	1.93	0.25
Crocodile					
Point	0.66	4.42	0.06	1.47	0.08
	2.92	79.69			1.91

Synthesized CP = 1.91

Synthesized Paleo-based Stage

0

Oct-91

Oct-93

Oct-95

Date

Oct-97

Oct-99

Mean Synthesized Paleo-based Values vs Observed

		Obs	Obs 95%	Paleo Syn	Paleo Syn 95%
Parameter	Ν	Mean	CI	Mean	CI
CP ¹	265	1.2	1.1-1.3	1.9	1.8 - 2.0
P33 ¹	429	6	5.9-6.1	7	6.9 - 7.1
TSBstage ¹	274	3.2	3.1-3.3	4.6	4.5 - 4.7
TSB ²	425	47.7	41-56	167	158 - 176
SRS ²	264	1090	947-1242	2814	2616 - 3012
WB ³	139	37.2	35.9-38.5	29.7	28.8 - 30.6
TB ³	110	23.7	21.7-25.7	11.9	10.9 - 13.0

¹ ft NGVD29 ² cfs ³ salinity

Synthesized Paleo-based Salinity Regime in Terrapin Bay

Fig. 1. Comparison of Venice System and estuarine salinity zones derived from multivariate analysis.

SOURCE: Bulger, Hayden, Monaco, Nelson, McCormack-Ray; Estuaries Vol. 16, No. 2, p. 311-322 June 1993

Reality Check

How do paleo-based river flow estimates compare to estimates of available water in the system?

POR Freshwater Discharges to Atlantic Ocean, Gulf of Mexico

Comparison of Synthesized Paleobased SRS Flow and Existing SRS + Tide Discharge (75%)

Reality Check Answer

- Paleo-based flow estimates agree favorably with available water
- Plenty of water discharged to tide to cover paleo-based needs
- Technical issues:
 - Storage
 - Treatment
 - Operations

Estuarine / Nearshore Coastal Shelf Benefits of Re-diversion to Park

Summary

- Coupling sediment faunal characterizations with regression models is a useful tool for linking paleosalinity data to upstream hydrology in the Everglades
- Consistent but slightly different results from all 5 paleo evaluations
- Optimal Linear Combiners allowed use of information from all cores in synthesis
- Upcoming work on west (Gulf) coast may validate or modify these findings

Summary

- Establishing pre-drainage salinity regime requires about 2.5 times more freshwater than current flow regime
- Volume of water discharged to tide is more than sufficient
- Restored result is a more estuarine Florida Bay mesohaline to polyhaline as opposed to euryhaline current condition
- Restoring flow regime restores hydroperiod and pattern in freshwater marshes and mangroves

Greater Everglades Ecosystem Take-home Message

Restored Hydrology = Restored Salinity = Restored Ecosystem

Photo by A. Gelber via D. Deis

THANK YOU!