MARYLAND DEPARTMENT OF NATURAL RESOURCES

Maryland's large-scale eelgrass (*Zostera marina*) restoration: A retrospective analysis of techniques, costs and monitoring

Becky Raves Golden August 5th, 2011

MARYLAND DEPARTMENT OF NATURAL RESOURCES MARYLAND SMARL Green & Growing SAV Restoration in Chesapeake Bay

- Chesapeake 2000 Agreement
 - By 2002, implement a strategy to accelerate protection and restoration of SAV beds in areas of critical importance to the Bay's living resources.
- Strategy to Accelerate the Protection and Restoration of Submerged Aquatic
 Vegetation in the Chesapeake Bay
 - Accelerate SAV restoration by planting 1,000 acres of new SAV beds by December 2008.

MARYLAND DEPARTMENT OF NATURAL RESOURCES **Project Goals**

- Identify sites for restoration
- Conduct large-scale restoration with eelgrass seeds
- Evaluate associated factors
- Produce a final, technical analysis

MARYLAND DEPARTMENT OF NATURAL RESOURCES **Restoration Site Selection**

MARYLAND DEPARTMENT OF NATURAL RESOURCES **Restoration Site Selection**

MARYLAND DEPARTMENT OF NATURAL RESOURCES Seed Collection

MARYLAND DEPARTMENT OF NATURAL RESOURCES Seed Dispersal – Technique 1

MARYLAND

Smart, Green & Growing

MARYLAND DEPARTMENT OF NATURAL RESOURCES Seed Processing and Storage

MARYLAND

Smart, Green & Growing

MARYLAND DEPARTMENT OF NATURAL RESOURCES Seed Dispersal – Technique 2

Fall Seed Broadcast

MARYLAND DEPARTMENT OF NATURAL RESOURCES MARYLANC OMPARISON OF DISPERSAL Methods

- Seed collection yield is variable
- Mechanical more efficient than manual collection using snorkeling/SCUBA

	2003	2004	2005		2006		2007	2008
Collection								
Collection method	Manual	Mechanical	Mechanical	Manual	Mechanical	Total	Mechanical	Mechanical
No. of collection days	8	9	9	8	4	10	7	6
Z. marina yield (L)	22796	89918	204482	1451	2467	3918	54510	39179
Collection rate (L/day)	2849	9991	22720	181	617	392	7787	6530
Processing and Storage								
Volume of Z. marina seeds processed (L)	N/A	71.9	109.8			32.5	48.8	70.3
Viable Z. marina seeds remaining after storage (no. and (% of total))	345000 (16)	1058400 (7)	2527000 (20)		34	49888 (87)	540867 (21)	961567 (60)
Dispersal								
Seeds dispersed through spring seed bag method (%)	0	92	71			38	6	0
Seeds dispersed through fall broadcast method (%)	100	8	29			62	94	100

MARYLAND DEPARTMENT OF NATURAL RESOURCES Cost Comparison

Spring Seed Buoy

	Total Cost of Method	Total Number of Seeds	Cost per seed dispersed	Cost per Acre
2004	\$48,194	2,155,000	\$0.02	\$4,473
2005	\$30,464	2,255,000	\$0.01	\$2,702
2006	\$21,413	108,000	\$0.20	\$39,654
2007	\$2,850	17,500	\$0.16	\$32,571
Mean	\$25,730	1,133,875	\$0.10	\$19,850

Fall Seed Broadcast

	Total Cost of Method	Total Number of Seeds	Cost per seed dispersed	Cost per Acre
2004	\$125,616	374,500	\$0.34	\$67,085
2005	\$153,294	1,802,500	\$0.09	\$17,009
2006	\$110,056	349,500	\$0.31	\$62,979
2007	\$142,718	540,000	\$0.26	\$52,859
2008	\$117,708	961,567(800,000)	\$0.12	\$24,473
Mean	\$129,878	802,613	\$0.22	\$44,881

MARYLAND DEPARTMENT OF NATURAL RESOURCES **Project Summary**

- 2003-2008
- 2 Rivers, 10 sites
- ~13 million eelgrass seeds
- 66 acres
- \$0.17/seed
 (~\$32,000/acre)

MARYLAND DEPARTMENT OF NATURAL RESOURCES Monitoring

- Eelgrass monitoring: May, August, October
- Spatial & Temporal Habitat monitoring: April October
- Compare by Seed dispersal method, Year & Site

MARYLAND DEPARTMENT OF NATURAL RESOURCES Seedling Establishment

- % of seeds observed as seedlings
- Highly variable (0 8%)
- 80% of sites with observed seedlings
 - % Seedlings Observed

MARYLAND Smart, Green & Growing

MARYLAND DEPARTMENT OF NATURAL RESOURCES Patuxent River - 2006

MARYLAND Smart, Green & Growing

MARYLAND DEPARTMENT OF NATURAL RESOURCES **Potomac River -2006**

MARYLAND Smart, Green & Growing

MARYLAND DEPARTMENT OF NATURAL RESOURCES Eelgrass Survival

- No correlation with seedling establishment
- Summer shoot density was inversely related to summertime exceedences of habitat tolerances (Golden et al., 2010)
- 20% of sites remain vegetated
 - up to 6 years

Golden et al., 2010

MARYLAND DEPARTMENT OF NATURAL RESOURCES **Project Goals**

- Identify sites for restoration
- Conduct large-scale restoration with eelgrass seeds
- Evaluate associated factors
- Produce a final, technical analysis

MARYLAND DEPARTMENT OF NATURAL RESOURCES Challenges

- Restoration site selection is critical
 - determining restoration site potential takes several years
 - refinement of SAV habitat criteria for restored populations of *Z. marina* is needed
- Seed collection and storage is labor intensive and donor beds are unpredictable
- Monitoring plant health and water quality on meaningful frequencies is time consuming and expensive

MARYLAND DEPARTMENT OF NATURAL RESOURCES Lessons Learned

- The use of seeds is a practical option for largescale *Z. marina* restoration in the Chesapeake Bay
- The cost to seed one acre of unvegetated bottom was consistently cheaper utilizing the buoy-deployed spring seed bags than the fall seed broadcast method
- Fall seed broadcast resulted in greater seedling establishment and plant densities than with the spring seed bag method

MARYLAND DEPARTMENT OF NATURAL RESOURCES Considerations

- The role of long-term trends and regional events or extremes in SAV habitat conditions must be considered in restoration projects
- Monitoring frequency and scale is crucial to provide sufficient resolution in order to explain observed changes in eelgrass shoot density and long-term survival
- How do you define successful SAV restoration?

MARYLAND DEPARTMENT OF NATURAL RESOURCES Acknowledgements

Maryland Park Service Maryland Conservation Corps Many, many volunteers

