### Defining the Spatial and Temporal Extent of Ecosystem Restoration Project Environmental Benefits NCER 2011, Baltimore, MD 1-5 August

Sarah J. Miller Environmental Laboratory U.S. Army Engineer Research and Development Center Vicksburg, MS 39180

Mark Brinson Rick Rheinhardt Department of Biology East Carolina University Greenville, NC 27858





### US Army Corps of Engineers Civil Works Planning Context

- Ecosystem Restoration goal: to restore significant aquatic ecosystem structure, function and dynamic processes that have been degraded (EP 1165-2-501)
- Ecosystem restoration should achieve naturalistic, functioning, and self-regulating systems and should result in less degraded, more natural condition in concert with acknowledged constraints presented by human activities – sometimes necessitating partial (EP 1165-2-502)



### **Ecosystem Structure and Function**

- Structure refers to both the composition of the ecosystem and to its physical and biological organization (NRC 2005)
- Functions are the physical, chemical, and biological processes that create and sustain an ecosystem (Fischenich 2005); a set of interconnected processes can define a broader ecosystem function



## Framework for Science-Based Environmental Benefits Analysis

 In cases where full return to pre-disturbance conditions is not feasible, the ability to evaluate partial restoration of ecosystem structure and function and to quantify benefits associated with restoration actions serves as a basis for the EBA process

Quantify Environmental Benefits to:

- Compare different alternatives, projects or programs
- Assess return on investment for a particular restoration initiative
- Prioritize restoration projects in the face of limited budgets
- Maximize environmental benefits per dollar spent
- Ensure mitigation requirements are met or to calculate banking credits



### Environmental Benefits Analysis in Corps 6-Step Planning Process

- Phase 1 of the EBA, the qualitative phase, is consistent with Step 1 of the planning process (Specify Problems and Opportunities)
- Activities in this phase include:
  - Development of a conceptual ecological model
  - Identification of appropriate temporal and spatial scales for system evaluation
  - Initial consideration of an adaptive management approach
  - Identification of key uncertainties
- The conclusion of EBA Phase 1 is development of objectives for the restoration effort



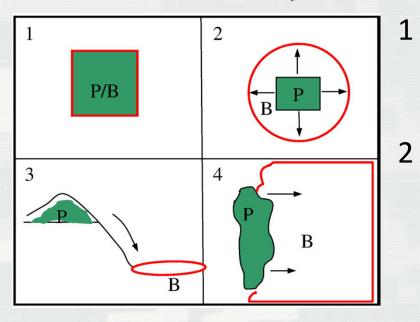
### **Environmental Benefits Analysis: The Problem**

 Benefits ascribed to ecosystem restoration projects may be underestimated if limited to those within the project footprint, or to project design life or planning timeframe



### **Research Objectives and Approach**

- Summarize scientifically defensible frameworks from the literature for determining spatial and temporal boundaries for ecosystem restoration benefits
- Summarize important considerations for:
  - Setting scientifically meaningful boundaries for ecosystem restoration project effects
  - Assessing benefits through a reasonable and practicable planning timeline
  - Reasonably accounting for the full suite of anticipated ecosystem restoration project benefits
  - Enabling a more realistic environmental benefits accounting of the Corps' ecosystem restoration Program

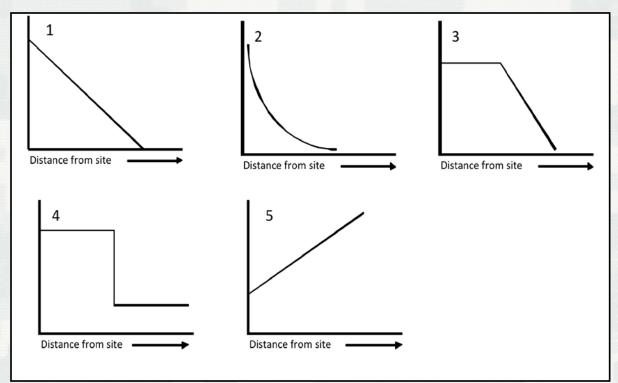

**Linii** <sub>®</sub>

### Spatial Considerations – Our Assumptions

- Environmental Benefits represented by change in ecosystem structure and function resulting from restoration actions directly linked to project objectives
- A project site is primarily defined by its footprint the geographic extent of restoration actions – though benefits often extend further
- In general, environmental benefits diminish with distance from the project footprint
- There are many caveats, nuances and exceptions to this assumption



Potential spatial relationships between restoration activities at Project site (P) and Benefit areas (B) (from Fisher et al. 2009)




- All Benefits contained within Project site (e.g., benthic habitat improvement)
- Benefits extend some distance into the landscape surrounding the Project site (e.g., source populations)
- Benefits occur completely outside the Project area (e.g., change 3 hydrologic regime through dam modification / management) Some overlap in Benefits and Project areas (e.g., barrier island 4 or fringe wetland creation providing storm surge attenuation and sediment deposition)



**BUILDING STRONG** 

### Potential effects on ecosystem benefits with distance from



 Linear decrease (e.g., wildlife utilization relative to prime habitat)

**Project site:** 

- 2 Exponential decrease ( e.g., reduction in flood recurrence intervals without strong geomorphic control)
- 3 No change, then linear decrease (e.g., salamander population with distance from vernal pool)
- 4 Stepped decline, such as a resource with strong geomorphic barrier (e.g., benefits maximal in wetlands, much lower in uplands)
- 5 Linear increase that results when larger area includes more habitat (e.g., depressional wetlands like prairie potholes or vernal pools)



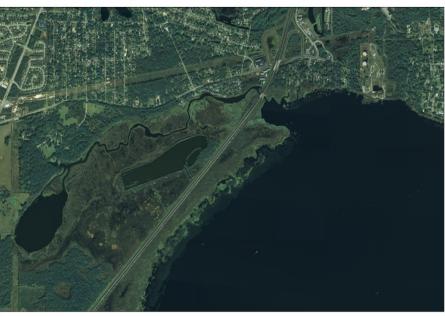
### **Additional Scale Considerations**

- There is a lower limit to what we can measure making EBA more difficult for smaller projects or restoration with geographically diffuse or shifted effects
- Relative value and distribution of ecosystem type matters – scarcity, connectivity, significance
- Structural and Functional boundaries can differ markedly



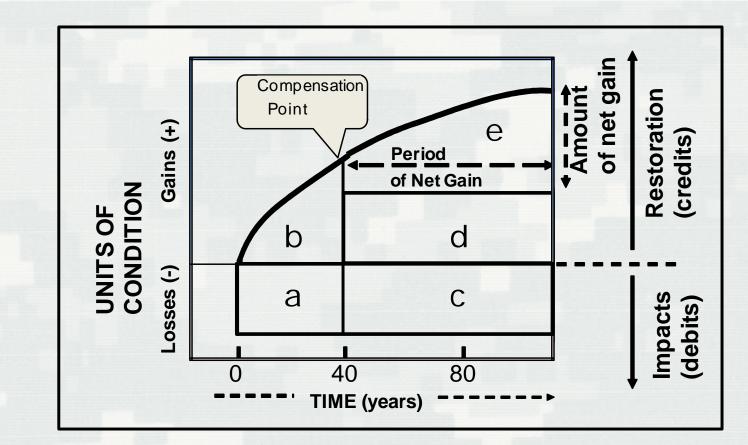
#### Attributes of ecosystem boundaries, from Post et al. 2007.

#### Types of definition:


| Structural<br>Functional | Based on physical boundaries (e.g., watersheds, aquatic-terrestrial)<br>Based on changes in the rates of interactions and exchanges among units of study                                                                                                                   |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |                                                                                                                                                                                                                                                                            |
| Structural               | Structural boundaries can be process-independent                                                                                                                                                                                                                           |
| Functional               | By definition, functional boundaries depend upon the process of interest                                                                                                                                                                                                   |
| Origin:                  |                                                                                                                                                                                                                                                                            |
| Structural:              |                                                                                                                                                                                                                                                                            |
| Geomorphic               | Topographical boundaries including watersheds, aquatic-terrestrial boundaries, continental shelf vs. deep sea, etc                                                                                                                                                         |
| Physiochemical           | Thermoclines and chemoclines, e.g., freshwater-saltwater boundaries in estuaries.                                                                                                                                                                                          |
| Dimensional              | Surface-related boundaries including surface vs. soil, benthic vs. pelagic, ground vs. canopy.                                                                                                                                                                             |
| Biological               | Physical boundaries among habitats, e.g., the boundary between old fields and forest.                                                                                                                                                                                      |
| Functional:              |                                                                                                                                                                                                                                                                            |
| Material and energy flow | Ecosystem boundaries defined by steep gradients in the flow of material and energy including resource sheds,<br>nutrient spiraling, and discontinuities in nutrient or energy exchange. Often mediated by structural boundaries<br>that limit exchange between ecosystems. |
| Species interactions     | Community boundaries defined by the location of weak(er) species interactions. At times mediated by structural boundaries that limit interactions among species.                                                                                                           |
| Movement of organisms    | Population boundaries set by limits to immigration or emigration, and gene flow. Often mediated by structural boundaries that limit migration and gene flow.                                                                                                               |
| Activities:              |                                                                                                                                                                                                                                                                            |
| Transmission             | The boundary is semi-permeable and allows only a fraction of organisms or material to pass, or reduces the strength of species interaction.                                                                                                                                |
| Transformation           | The boundary changes the state of material or species interactions, e.g., N transformation at the soil-stream interface                                                                                                                                                    |
| Absorption or reflection | The boundary is impermeable and either stops or redirects interactions among species or the flow of organisms and material.                                                                                                                                                |
| Neutral                  | The boundary does not affect the flow of material or species interactions. Can only apply to structural boundaries                                                                                                                                                         |

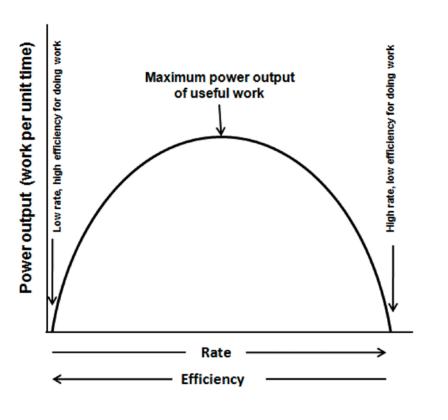
4

### **Temporal Considerations**


- Historical condition (separate from reference condition) sets the benchmark against which to:
  - Assess relative degradation
  - Calculate previous degradation rates
  - Determine thresholds and construct trajectories






### **Temporal Considerations**

- Immediate -- Final benefits when and in what order do benefits occur? Proper accounting can limit "double counting"
  - Improved hydrologic regime => restoration of wetland soil properties => return of vegetation
  - Nutrient and sediment source control => clearer water => return of submerged aquatic vegetation
- Rate of recovery from restoration and persistence of benefits compared to project "design life" or planning timeline (e.g., 50yr)



Assuming no additional degradation, a degraded control site (without project) would continue to show a loss of function (negative condition) (a + c). A restored site could gain function over time such that lost functions would be compensated at yr 40 (b=a). After that period, there would be net gain (e) in function.

The relationship of power output to rate and efficiency: maximum power output occurs at an intermediate rate and efficiency (from Hall et al. 1995).



- Balancing rate of restoration and (assumed) associated rate of accrual of benefits with expense
- Highest efficiency in environmental benefits production is at low rate/cost – slow but cheap
- Least efficient is at high rate/cost – expensive put fast

**BUILDING STRONG**®

### In Summary:

- Effective project area can be defined by the geographic extent of changes to ecosystem structure and function linked to restoration objectives
- Benefits can occur, accrue and persist from the time of restoration action, through project design life or 50yr planning timeline, and beyond
- Incorporating the combination of these considerations should enable more complete accounting for the full suite of anticipated ecosystem restoration project benefits at both project and **Program scales**

BUILDING STRONG

Defining the Spatial and Temporal Extent of Ecosystem Restoration Project Environmental Benefits NCER 2011, Baltimore, MD 1-5 August

Sarah J. Miller – THANK YOU!

Research Ecologist, Fluvial Geomorphologist Environmental Laboratory U.S. Army Engineer Research and Development Center Vicksburg, MS 39180 sarah.j.miller@usace.army.mil

# **QUESTIONS?**

