ECOSYSTEM RESTORATION ON THE TRUCKEE RIVER, NEVADA: INTEGRATING ECOSYSTEM RESTORATION WITH FLOOD RISK MANAGEMENT IN A HIGH-DESERT LANDSCAPE

Daniel Artho

Senior Environmental Manager Sacramento, CA August 5, 2011

US Army Corps of Engineers Sacramento District BUILDING STRONG_®

Truckee Meadows, NV

- Flooding problem in Reno/Sparks area
- Damaging floods in 1950, 1955, 1963, 1986, 1997, & 2005
- 1997 largest flood on Record
- Estimated \$750 million in damages
- Great risk both in frequency and magnitude

Existing Floodplain – Truckee Meadows Reach

Restoration Integrated with Flood Risk Management (FRM)

- Setback levees and floodwalls.
- Floodplain terracing inside setbacks.
- Invasive plant removal and control.
- Riparian plantings on terraces.

BUILDING STRONG_®

FRM Effects on Lower Truckee River Flows

- Meadows FRM = \hat{U} downstream flows.
- Ecosystem restoration attenuates flows?
- Hydraulic models indicated minimal attenuation of higher flows.
- However, substantial restoration benefits identified to support ER project purpose.

Degraded Ecosystem - Causes

- Reduced flows from diversions
- Upstream dams alter sediment transport
- Deforestation near river
- Channel incision
- Disconnected
 Floodplain

- Channel Straightening
- Reduced hydraulic complexity
- Widened Channel
- Increased water temperature

Degraded Ecosystem -Examples

Truckee Meadows - 1940

Truckee Meadows - 2006

Degraded Ecosystem -Examples

Channel Incision

Derby Dam

Degraded Ecosystem -Examples

Invasive Plants - whitetop

Channel Widening

Ecosystem Restoration Objectives

- Increase riparian habitat.
- Restore hydrogeomorphic structure and functions.
- Increase wetland habitat.
- Reduce nonnative invasive plant species.
- Restore instream aquatic habitat.
- Improve upstream and downstream fish passage.

Ecosystem Restoration Measures

- Riparian Habitat Passive/Active Restoration.
- New Channel Meanders.
- New Channel Bed and Terraces/Benches.
- New Floodplain Ground Contours.
- Floodplain Wetland Habitat.
- Remove Invasive Plant Species.
- Restore River Riffle/Pool Complex.
- Fish passage features at dams.

12 Segments

Ecosystem Restoration

McCarran Ranch – Pilot Project

2006

2010

Fish Passage

30+ Barriers to Migration

Nine Fish Barriers Selected

Passage Improvements Used

- Bypass channel
- Modification to Fish Ladder
- Replace Diversion with Pump
- Modify Existing Diversion Structure
- Install Fish Screens

Bypass Channel and Fish Screen

BUILDING STRONG_®

Modify Fish Ladder

DOX AFFLE 78

NAC & MIL

RECLAMATION

Replace Diversion with Pump

BUILDING STRONG_®

Modify Existing Diversion

BUILDING STRONG_®

