PART 4. The Future – Lessons Applied

Roy R. "Robin" Lewis III, MA, PWS
Laura L. Flynn and Benjamin M. Brown
Coastal Resources Group, Inc. [501(c)(3)]
Salt Springs, Florida, USA

ALTERNATIVE APPROACHES TO MANGROVE RESTORATION/REHABILITATION

Ecological Mangrove R/R (EMR) versus Planting Only (Brown and Lewis 2006, Brown et al. 2014, Lewis 2000, 2005, 2009, Lewis and Brown 2014)

- 1. Understand Autecology and Community Ecology
- 2. Understand Normal Hydrology of Mangroves
- 3. Assess Modifications to Hydrology or Added Stress?
- 4. Select the Restoration Site
- 5. Restore or Create Normal Hydrology, or Remove or Reduce Stress
- 6. Plant Mangroves Only As Needed

SUCCESS!

FAILURE**#!!*

Area Measurements

- 13.7 million ha of mangroves worldwide (2000)
- Approximately a 50% loss from historic coverage (37 million ha)(WRI 1996)
- Continued ~1% loss per year (150,000 ha/yr)
- 1,372,800 ha of active shrimp aquaculture ponds (1996) = 7.6% of the historic loss if all are in former mangroves
- Abandoned (disused) ponds = ?
- Lewis best estimate = 400,000 600,000 ha in 2016

1. NATURAL CONDITIONS

SHORELINE

2. POND CONSTRUCTION

3. POND OPERATION

4. POND ABANDONED

RESTABLISH FRESHWATER FLOWS

5. OPTION #1: FULL RESTORATION

RESTABLISH FRESHWATER FLOWS

5. OPTION #1: FULL RESTORATION

6. OPTION#1: FULLY RESTORED

7. OPTION #2: REHABILITATION INCLUDING AQUASILVACULTURE

8. OPTION #3: PARTIAL RESTORATION WITHOUT HYDROLOGIC CONSIDERATIONS

9. OPTION #4: PARTIAL RESTORATION WITH HYDROLOGIC CONSIDERATION

9. OPTION #4: PARTIAL RESTORATION WITH HYDROLOGIC CONSIDERATION

VERY IMPORTANT: Breaches are NOT placed randomly. They are STRATEGICALLY placed, and while larger rather than smaller, MORE are not BETTER. Why is that important?

Local Community Breaching Dike Walls of Abandoned Shrimp Aquaculture Pond, North Sulawesi, Indonesia

Restored Abandoned Shrimp Aquaculture Pond, Tiwoho, North Sulawesi, Indonesia, 2005, One Year After Restoration,

Restored Abandoned Shrimp Aquaculture Pond, Tiwoho, North Sulawesi, Indonesia, 2010, Six Years After Restoration,

Site 9

10 AUG 94

National Estuarine Research Reserve

Rookery Bay

May 28, 2012

Rookery Bay Fruit Farm Creek Proposed Restoration Site – January 21, 2011

Rookery Bay Fruit Farm Creek Proposed Restoration Site – January 21, 2011

Phase 1B (SG4) - 1 x 48" Culverts (proposed)
Phase 1B (SG4) - 1 x 60" Culvert (existing)
Phase 2 (SG2) - 3 x 48" Culverts (proposed)

Construction Phase 1A September 1, 2012

FFC PHASE 3 PROJECT AREA

Beggiatoa

520 cal B 4830 cal BP Holocene 6860 cal BP peat 8 7670 cal BP 10 Depth in meters 11 Pleistocene limestone

Twin Cays, Belize

Karen L. McKee U.S. Geological Survey science for a changing work

ACUTE DISTURBANCE AND NATURAL RECOVERY 25-50 years ACUTE/CHRONIC DISTURBANCE AND NO NATURAL RECOVERY CHRONIC DISTURBANCE AND PLANTINGS CHRONIC DISTURBANCE, REMOVAL, AND RECOVERY Culvert, dike breach, Rehabilitation CHRONIC PARTIAL DISTURBANCE, RESTORATION, AND RECOVERY 3-5 years 10 years Preemptive rehabilitation and avoided deforestation *Time frame varies. Variation is dependent on different chronic stress events **EXPLANATION** Carbon loss Mangrove with Carbon gain loss of canopy

Lewis et al. 2016 Mar. Poll. Bull. Download #100

Figure 2. Alternative disturbance and recovery processes in mangrove forests. Preemptive rehabilitation at Scenario 5 can prevent complete deforestation and collapse of organic soils (dashed red line) in the face of rising sea level.

^{*}Time frame varies. Variation is dependent on different chronic stress events

Lewis et al. 2016 Mar. Poll. Bull. Download #100

Figure 2. Alternative disturbance and recovery processes in mangrove forests. Preemptive rehabilitation at Scenario 5 can prevent complete deforestation and collapse of organic soils (dashed red line) in the face of rising sea level.

Figure 7. Carbon sequestration rates for seven different mangrove sites in four different hydrogeological settings for the hydrologically disturbed Hamilton Avenue Creek (HA) and reference Susan's Creek (SC). Bars depict mean (\pm standard error) carbon sequestration values (n = 3). Similar letters indicate no statistical differences, alpha equals 0.05. **From Marchio et al. 2016 download** # **504**

