How will mangrove encroachment and eroding impoundments impact coastal protection?

A Case Study in the Merritt Island National Wildlife Refuge

Cheryl Doughty¹, Kyle Cavanaugh¹, & Samantha Chapman²

¹UCLA ²Villanova University
Mangrove distribution adapted from Spalding et al. 2010; Salt marsh distribution compiled by UNEP and WCMC
Merritt Island National Wildlife Refuge

+ 69% in mangrove extent from 2003 - 2010
Mangrove expansion impacts wetland carbon storage

+ 22% total wetland carbon storage

• Driven primarily by aboveground biomass

Doughty et al. 2015
Plant structure influences coastal protection

- Dampens waves
- Increases drag force
- Slows water velocity
- Secures soils
- Decreases bed shear stress
- Sediment deposition

Guannel et al. 2015
Additional factors will play a role in coastal protection

- Climate
 - Wind & wave conditions

- Coastal Wetland Management
 - Mosquito impoundment maintenance
 - Impoundment berms are being graded/eroded

- Local topography

Map Diagram

- Impoundment infrastructure
- Wetland areas

© altamontefamily

How will habitat conversion and impoundment state impact coastal protection?
Model scenarios

- Habitat conversion: Mangrove, Saltmarsh
- Berm state: Intact berm, Graded berm
Model scenarios
- Habitat conversion: Mangrove, Saltmarsh
- Berm state: Intact berm, Graded berm

Wave Attenuation
- Wave evolution model
 - Dissipation due to breaking (Baldock et al. 2007)
 → Topography, Wave data
 - Dissipation due to vegetation (Mendez & Losada 2004)
 → Vegetation characteristics from field observations
Model scenarios
- Habitat conversion: Mangrove, Saltmarsh
- Berm state: Intact berm, Graded berm

Wave Attenuation
- Wave evolution model
 - Dissipation due to breaking (Baldock et al. 2007)
 → Topography, Wave data
 - Dissipation due to vegetation (Mendez & Losada 2004)
 → Vegetation characteristics from field observations

Nearshore Bed Erosion
- Wave run-up (USACE 2002)
- Bed Scouring (Whitehouse et al. 2004)
Model scenarios
- Habitat conversion: Mangrove, Saltmarsh
- Berm state: Intact berm, Graded berm

Wave Attenuation
- Wave evolution model
 - Dissipation due to breaking (Baldock et al. 2007)
 - Topography, Wave data
 - Dissipation due to vegetation (Mendez & Losada 2004)
 - Vegetation characteristics from field observations

Nearshore Bed Erosion
- Wave run-up (USACE 2002)
- Bed Scouring (Whitehouse et al. 2004)

Ecosystem Service Valuation
- Avoided erosion
 - Area of substrate saved compared to a no vegetation baseline
- Property value ($25 USD m⁻²)
Scenario Avoided Erosion
(baseline = no veg)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Avoided Erosion</th>
<th>Erosion Protection Value (USD m⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>6.2 %</td>
<td>$1265</td>
</tr>
</tbody>
</table>
Avoided Erosion

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Avoided Erosion (baseline = no veg)</th>
<th>Erosion Protection Value (USD m⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>6.2 %</td>
<td>$1265</td>
</tr>
<tr>
<td>Mangrove + Intact Berm</td>
<td>7.7 %</td>
<td>$1644</td>
</tr>
</tbody>
</table>

Diagram:
- **Legend:**
 - Orange: Mangrove
 - Gray: Intact Berm
 - Green: Salt Marsh
 - Red: Graded Berm

Graph:
- **Y-axis:** Elevation (m)
- **X-axis:** Distance from Shore (m)
Scenario Avoided Erosion

Erosion Protection Value (USD m⁻²)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Avoided Erosion (baseline = no veg)</th>
<th>Erosion Protection Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>6.2 %</td>
<td>$1265</td>
</tr>
<tr>
<td>Mangrove + Intact Berm</td>
<td>7.7 %</td>
<td>$1644</td>
</tr>
<tr>
<td>Mangrove + Graded Berm</td>
<td>7.8 %</td>
<td>$1750</td>
</tr>
</tbody>
</table>

Legend:
- **Mangrove**
- **Intact Berm**
- **Salt Marsh**
- **Graded Berm**
Scenario Avoided Erosion

(baseline = no veg)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Avoided Erosion</th>
<th>Erosion Protection Value (USD m$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>6.2 %</td>
<td>$1265</td>
</tr>
<tr>
<td>Mangrove + Intact Berm</td>
<td>7.7 %</td>
<td>$1644</td>
</tr>
<tr>
<td>Mangrove + Graded Berm</td>
<td>7.8 %</td>
<td>$1750</td>
</tr>
<tr>
<td>Salt Marsh + Intact Berm</td>
<td>4.7 %</td>
<td>$1048</td>
</tr>
<tr>
<td>Scenario</td>
<td>Avoided Erosion (baseline = no veg)</td>
<td>Erosion Protection Value (USD m⁻²)</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Current</td>
<td>6.2 %</td>
<td>$1265</td>
</tr>
<tr>
<td>Mangrove + Intact Berm</td>
<td>7.7 %</td>
<td>$1644</td>
</tr>
<tr>
<td>Mangrove + Graded Berm</td>
<td>7.8 %</td>
<td>$1750</td>
</tr>
<tr>
<td>Salt Marsh + Intact Berm</td>
<td>4.7 %</td>
<td>$1048</td>
</tr>
<tr>
<td>Salt Marsh + Graded Berm</td>
<td>4.8 %</td>
<td>$1114</td>
</tr>
</tbody>
</table>
How will habitat conversion and impoundment state impact coastal protection?

Wave Attenuation
• Wave breaking due to the presence of vegetation was 3x higher in mangroves

Avoided Erosion
• Mangroves prevented 3% more erosion than salt marshes compared to a baseline of no vegetation

Valuation
• Mangroves are estimated to be worth $600 more per m² than salt marsh in terms of erosion prevention
• Graded berms help to reduce erosion and make vegetated wetlands areas $100 more valuable than intact berms
Special thanks to:

• the Chapman-Langley Labs at Villanova University
• The Cavanaugh Lab at UCLA
• the Feller Labs at the Smithsonian Environmental Research Center and the Smithsonian Marine Station at Fort Pierce

This work was also made possible by:

• The UCLA Graduate Summer Research Mentorship Program
• the National Aeronautics and Space Administration Climate and Biological Response Program (NNX11AO94G, NNX12AF55G) and the Climate Adaptation Science Investigators (CASI) Workgroup
• the National Science Foundation Macrosystems Biology Program (EF 1065821)
• The Smithsonian Institution’s Link Foundation Fellowship (contribution No. 986)