

How will mangrove encroachment and eroding impoundments impact coastal protection?

A Case Study in the Merritt Island National Wildlife Refuge

Cheryl Doughty¹, Kyle Cavanaugh¹, & Samantha Chapman²

¹UCLA ²Villanova University

Mangrove distribution adapted from Spalding et al. 2010; Salt marsh distribution compiled by UNEP and WCMC

Mangrove expansion impacts wetland carbon storage

- + 22% total wetland carbon storage
- Driven primarily by aboveground biomass

Doughty et al. 2015

Plant structure influences coastal protection

- Dampens waves
 - Increases drag force
 - Slows water velocity
- Secures soils
 - Decreases bed shear stress
 - Sediment deposition

- Habitat conversion: Mangrove, Saltmarsh
- Berm state: Intact berm, Graded berm

- Habitat conversion: Mangrove, Saltmarsh
- Berm state: Intact berm, Graded berm

Wave Attenuation

- Wave evolution model
 - Dissipation due to breaking (Baldock et al. 2007)
 - → Topography, Wave data
 - Dissipation due to vegetation (Mendez & Losada 2004)
 - → Vegetation characteristics from field observations

- Habitat conversion: Mangrove, Saltmarsh
- Berm state: Intact berm, Graded berm

Wave Attenuation

- Wave evolution model
 - Dissipation due to breaking (Baldock et al. 2007)
 - → Topography, Wave data
 - Dissipation due to vegetation (Mendez & Losada 2004)
 - → Vegetation characteristics from field observations

Nearshore Bed Erosion

- Wave run-up (USACE 2002)
- Bed Scouring (Whitehouse et al. 2004)

- Habitat conversion: Mangrove, Saltmarsh
- Berm state: Intact berm, Graded berm

Wave Attenuation

- Wave evolution model
 - Dissipation due to breaking (Baldock et al. 2007)
 - → Topography, Wave data
 - Dissipation due to vegetation (Mendez & Losada 2004)
 - → Vegetation characteristics from field observations

Nearshore Bed Erosion

- Wave run-up (USACE 2002)
- Bed Scouring (Whitehouse et al. 2004)

Ecosystem Service Valuation

- Avoided erosion
 - · Area of substrate saved compared to a no vegetation baseline
- Property value (\$25 USD m⁻²)

	MangroveSalt MarshGraded Berm	Scenario	Avoided Erosion (baseline = no veg)	Erosion Protection Value (USD m ⁻²)
(m) 0.50 - 0.25 - 0.00		Current	6.2 %	\$1265
(w) 0.50 - 0.25 - 0.00		Mangrove + Intact Berm	7.7 %	\$1644
(m) 0.50 - 0.25 - 0.00		Mangrove + Graded Berm	7.8 %	\$1750
(m) 0.50 - 0.25 - 0.00		Salt Marsh + Intact Berm	4.7 %	\$1048
	-30 0 30 60 Distance from Shore (m)			

	MangroveIntact BermSalt MarshGraded Berm	Scenario	Avoided Erosion (baseline = no veg)	Erosion Protection Value (USD m ⁻²)
(w) 0.50 - 0.25 - 0.00		Current	6.2 %	\$1265
(m) 0.25 - 0.00		Mangrove + Intact Berm	7.7 %	\$1644
(m) 0.50 - 0.25 - 0.00		Mangrove + Graded Berm	7.8 %	\$1750
(m) 0.50 - 0.25 - 0.00		Salt Marsh + Intact Berm	4.7 %	\$1048
(m) 0.50 - 0.25 - 0.00		Salt Marsh + Graded Berm	4.8 %	\$1114
	-30 0 30 60 Distance from Shore (m)			

How will habitat conversion and impoundment state impact coastal protection?

Wave Attenuation

 Wave breaking due to the presence of vegetation was <u>3x higher</u> in mangroves

Avoided Erosion

 Mangroves <u>prevented 3% more erosion</u> than salt marshes compared to a baseline of no vegetation

Valuation

- Mangroves are estimated to be worth \$600 more per m² than salt marsh in terms of erosion prevention
- Graded berms help to reduce erosion and make vegetated wetlands areas \$100 more valuable than intact berms

Special thanks to:

- the Chapman-Langley Labs at Villanova University
- The Cavanaugh Lab at UCLA
- the Feller Labs at the Smithsonian Environmental Research
 Center and the Smithsonian Marine Station at Fort Pierce

This work was also made possible by:

- The UCLA Graduate Summer Research Mentorship Program
- the National Aeronautics and Space Administration Climate and Biological Response Program (NNX11AO94G, NNX12AF55G) and the Climate Adaptation Science Investigators (CASI) Workgroup
- the National Science Foundation Macrosystems Biology
 Program (EF 1065821)
- The Smithsonian Institution's Link Foundation Fellowship (contribution No. 986)

