

Managing oil spill impacts on mangroves: should we be concerned?

Dr Norman Duke (<u>norman.duke@jcu.edu.au</u>) *Mangrove Hub* (www.mangrovewatch.org.au)

Further reading ...

Duke, N.C., 2016. Oil spill impacts on mangroves: Recommendations for operational planning and action based on a global review. *Marine Pollution Bulletin* 109: 700-715

Should we be concerned?

Prior oil spill incidents

Impacts on mangroves

Recovery and Rehabilitation

Experimental trials – field & tidal tanks

Better managing oil spill incidents

Global database...

Incident	Spill Year	Location (tidal range in m)	Type of Oil"	Oil Released (tonnes)	Mangrove Oiled (ha)	Mangrove Killed (ha)	Recovery Estimate (%)
<i>USS Chehalis</i> NOAA 2016	1949	Pago Pago Harbor, America Samoa	D, JF	362	Likely	?	
JP-5 Fuel Tank Eoearth 2010	1958	Roosevelt Roads, Naval Air Station, Puerto Rico	BFO	50?	YES	?	
Argea Prima Diaz-Piferrer 1964; Baker 1982	1962	Guayanilla Harbour, Puerto Rico	CO	10,000	YES	?	
Tanker, unspecified El-Nemr 2006	1966	Arabian Gulf, Qatar	СО	13,000	Likely	?	
General Colocotronis NOAA 2016	1968	Eleuthera Island.	СО	4,878	Likely	?	
Ocean Eagle NOAA 2016	1968	San Juar Puerto: repor	rted	9,252	Likely	?	
<i>World Glory</i> NOAA 2016	1968	Durban, Africa incide		44,058	Likely	?	
Witwater Rützler & Sterrer. 1970; Duke et al., 1997; Eoearth 2010; NOAA 2014, 2016	1968	Bahia Las Minas (0.6), Panama	D, BFO	2,544	~490	49	80+
Oceanic Grandeur Duke & Burns, 2003; CEDRE 2015; AMSA, ITOPF 2016	1970	Torres Strait (2.6), QLD, Australia	СО	<4,100	~10	1	90-100

Duke, N.C., 2016

Findings...

Impacts of oil spills on mangrove habitat

- Mangroves highly vulnerable;
- At least 238 notable incidents ranked for vessels, pipelines, shore tanks, well heads
- 5.5 million tonnes of oil released along mangrove shorelines
- 1.94 million ha of mangroves oiled
- 126,000 ha of mangrove loss and removal since 1958
- Worst affected region by numbers of incidents = East America 141 of 238
- Worst affected region by area of oiled mangroves = West Africa 18,665 ha
- Notable gaps and omission in the records
- Notable deterioration of reporting over 6 decades

Anywhere mangroves grow!

Oil spill incidents & mangroves

A summary of reported oil spill incidents affecting, or likely to have affected, mangrove habitat.

Should we be concerned?

Prior oil spill incidents

Impacts on mangroves

Recovery and Rehabilitation

Experimental trials – field & tidal tanks

Better managing oil spill incidents

Largest areas of oiled mangroves

Habitat damage & impact – lethal and sublethal

Ten largest areas of mangrove habitat oiled include:

- Nigeria Funiwa 5 Well blowout in 1980 oiling 5,107 ha;
- Pakistan Tasman Spirit sinking in 2003 oiling around 1,000 ha;
- Nigeria Pipeline rupture Bodo in 2008 oiling at least 1,000 ha;
- The Philippines Solar 1 sinking in 2006 oiling 650 ha;
- Panama Texaco Refinery spill in 1986 oiling 377 ha;
- Nigeria Pipeline sabotage, Bodo West in 2011 oiling 366 ha;
- Brazil pipeline rupture near Sao Paulo in 1983 oiling around 300 ha;
- Micronesian islands of Yap sinking of the *Kyowa Violet* in 2002 oiling 300 ha;
- India sinking of the MSC Chitra in 2010 oiling around 200 ha; and
- Australia the holing of the *Era* in 1992 oiling 100 ha.

Largest areas of oil dead mangrove

Habitat damage & impact – lethal

Ten largest areas of mangrove habitat damage reported have been:

- Nigeria 340 ha killed by the Funiwa 5 well head spill in 1980;
- Nigeria 200 ha killed by the Bodo pipeline rupture in 2008;
- Panama 69 ha killed by the Texaco Refinery spill in 1986;
- Panama 49 ha killed by the Witwater sinking spill in 1968;
- Nigeria 32 ha killed by the Bodo West pipeline sabotage in 2011.
- Indonesia 20 ha killed with the sinking of the Showa Maru in 1975;
- Puerto Rico 12 ha killed with the Jet Fuel tank spill in 1999;
- Brazil 10.5 ha killed by a Jet Fuel tank spill in 1999;
- Yap, Micronesia 10 ha killed with the sinking of the Kyowa Violet in 2002; and
- Puerto Rico 6 ha killed by an earlier Jet Fuel tank spill in 1986.

Should we be concerned?

Prior oil spill incidents

Impacts on mangroves

Recovery and Rehabilitation

Experimental trials – field & tidal tanks

Better managing oil spill incidents

Recovery phases

Recovery Phase of Sap	%Percent Recovery	Sub lethal Trajectory	Lethal Trajectory in Gap	Lethal State Representation in Gap
vatural pre- lamage state	Reference condition	Foliage dense with yellowing leaf numbers less than 10%. Seedling bank under closed mature canopy.	Trees mostly alive throughout stand; occasional dead trees and up to ~10% light gaps in ambient conditions.	IIII
I. Recently piled	Positive 1-10	Yellowing and loss of foliage in affected areas, and presence of dead, low- placed seedlings. Some surviving	Tree death (within 6-12 months after spill), dead seedlings and saplings. Trees with dead yellow leaves and small twigs present. Mostly	KIII
2. Recovery preliminary	Positive 11-30	seedlings. Loss of foliage in affected areas, and presence of dead, low- placed seedlings.	dead seedlings. Deterioration of dead trees missing small branches and twigs. No appreciable recruitment, some seedlings.	IIII
3. Recovery established	Positive 31-50	Foliage density in recovery with new growth. Re-establishment seedling bank under re-established	Deterioration of dead trees missing large branches and upper stems. Establishment of additional seedling recruits in open areas.	Iheil
i. Recovery progressed	Positive 51-70	Foliage density in recovery with new growth. Re- establishment seedling bank under re- established canopies.	Notable large stumps remain with some exposed roots. Saplings dominate in dense stands, in the forest gaps. Immature, low level canopy closure.	Lai
5. Recovery advanced	Positive 71-90	Foliage density in recovery with new growth. Re- establishment seedling bank under re- established canopies.	Reduced remnant dead stumps & wood sections. Canopy closure advanced. Notable thinning of saplings and young seedlings present.	
 Structural ecovery in inal stages of completion. 	Positive 91-100	Normal foliage density with canopy closed. Site Maximal Canopy Height unaffected. Presence of seedling bank of 3-6 year old young plants, and a notable gap between mature canopy trees.	None or occasional remnant mature-sized stumps. Canopy closed. Damaged area Site Maximal Canopy Height restored. Formation of seedling bank of 3-6 year old recruits, notable class gap to mature canopy.	KUULL
Possible deterioration state post ecovery, ikely from phases 1 to 5	Negative condition	Foliage absent in impacted gap area	Dependent on state of gap degradation. Absence of integrated roots, living seedlings, saplings and young trees. Evidence of scouring.	Z I

Recovery time

Recovery – tidal flushing

Mangrove Regeneration vs. Recovery Time & Canopy Height Influence of repeated oil contamination

Should we be concerned?

Prior oil spill incidents

Impacts on mangroves

Recovery and Rehabilitation

Experimental trials – field & tidal tanks

Better managing oil spill incidents

Experimental work on oil spill impacts on mangroves – lack of recent studies

Should we be concerned?

Prior oil spill incidents

Impacts on mangroves

Recovery and Rehabilitation

Experimental trials – field & tidal tanks

Better management of oil spill incidents

Recommendations

better methods, more reporting ...

- 1. 'Response Plan' as Pre, During, Impact, Post (PDIP) spill
- 2. 'Report', record and make available publically, all relevant information about oil spill incidents
- 3. 'Establish baseline' condition of the oil-threatened mangrove shorelines
- 4. 'Collect data' on large oil spills in a standardized, expanded format
- 5. 'Record oil volume' the type, extent and concentrations
- 6. 'Post-spill monitoring of impacted habitat' to be conducted over 3-4 decades
- 7. 'Highest protection' for mangroves along exposed foreshores & fringing stands
- 8. 'Post-spill monitoring of impacted fauna' needs to continue for more than two years
- 9. 'Consider no-action default' and justify benefits versus habitat harm with intervention

Concerns

Should we be concerned?

- Oil spill releases have continued the same
- Incident numbers have increased in recent decades
- Notable gaps in the data available
- Recent decades decline in measurement and recording of oil spill impacts on mangroves

Recommendations

Managing & monitoring oiled mangrove habitat better

- Recommendations for improved record taking and monitoring
- Standard measures of impact
- Standard evaluations of recovery
- More reporting on incidents past and present!

₩ JAM UN