Characterization of a Novel Circovirus from a Stranded Longman's Beaked Whale (*Indopacetus pacificus*)

Nelmarie Landrau Giovannetti, Kuttichantran Subramaniam, Terry Fei Fan Ng, David S. Rotstein, Kristi West, and Thomas B. Waltzek

Talk Outline

- Introduction to the family *Circoviridae*
 - Biology
 - Clinical disease
 - Taxonomy
- Objective
- Stranded Hawaiian Longman's beaked whale
 - Clinical case history
 - Viral genomic characterization
 - Beaked whale circovirus (BWCV) genome annotation
 - Phylogenetic analysis
 - Sequence identity matrix
 - BWCV diagnostic PCR
- Conclusions/Future Directions

Biology of Circoviridae

- Circular, ssDNA
 - 1.8-2 kbp
- Non-enveloped nucleocapsid with icosahedral symmetry
 - 17 nm diameter

Swiss Institute of Bloinformatics

T=1

- 2 genes: capsid and replicationassociated protein
 - Rolling cycle replication

Clinical Disease of Porcine Circovirus 2 (PCV2)

- Associated with the occurrence of postweaning multisystemic wasting syndrome (PMWS) in pigs between 6-18 weeks:
 - Gross pathology
 - Poor body condition
 - Microscopic pathology
 - Lymphoid depletion
 - Cytoplasmic botryoid inclusions
 - Disease outcome
 - Immunocompromised
 - Secondary infection lead to increased mortality

Niederwerder et al., 2015

Taxonomy of the family *Circoviridae*

- Genus: Cyclovirus (43 species)
 - 16 bat cycloviruses
 - -9 invertebrate cycloviruses
 - 7 mammalian cycloviruses
 - 11 human cycloviruses

Taxonomy of the family *Circoviridae*

- Genus: *Circovirus* (27 species)
 - 2 fish circoviruses (Barbel circovirus 1st circo reported in fish)
 - 8 bat circoviruses
 - 11 avian circoviruses (beaked and feather disease virus)
 - 5 mammalian circoviruses (porcine circovirus 1-3)

Objective

• To characterize a novel circovirus from a stranded Longman's beaked whale

Stranded Hawaiian Longman's Beaked Whale

- Gross pathology
 - Broken jaw
 - Cookie cutter shark bites
- Microscopic pathology
 - Mild lymphocyte depletion
 - Immunocompromised
 - Cerebral encephalitis
 - Pulmonary edema
- Co-infection of an alphaherpesvirus & beaked whale morbillivirus (BWMV)

Jacob et al. 2016; West et al. 2013

Viral Genomic Characterization

- Illumina MiSeq Next Generation Sequencer (NGS)
 Beaked whale circovirus (BWCV) was discovered
- Phylogenetic analysis IQ tree software
- Sequence identity matrix Sequence Demarcation Tool v1.2
- Development of specific BWCV conventional PCR

BWCV Genome Annotation

- 2,021 bp, GC content of 46.1%
- Has the nine conserved nonanucleotide (5'- TAGTATTAC -3')

CV Tree (replication gene)

- ML phylogenetic analysis
- Rep AA alignment (351 aligned characters)
- 1000 bootstraps

CV Tree (replication gene)

- ML phylogenetic analysis
- Rep AA alignment (351 aligned characters)
- 1000 bootstraps

Circovirus Sequence Identity Matrix

Pairwise identity (%)

Genus Circovirus – full genome nt alignment (2094 aligned characters)

																											- 100
>AF418552_GoCV	100.0																										- 95
>EU056309_SwCV	73.4	100.0																									
>AY228555_DuCV	69.1	67.5	100.0																							-	
>AF027217_PCV2	56.5	55.8	53.4	100.0																							-85
>AB277746_BFDV	55.7	56.9	53.8	77.8	100.0																						
>KC339249_BataCV2	55.2	55.1	54.5	63.5	65.1	100.0																				- H	
>JX863737_BatACV1	55.4	52.2	53.3	57.0	57.0	58.9	100.0																				- 76
>KJ020099_MiCV	54.5	55.9	53.2	58.1	57.1	56.5	66.5	100.0																			
>JQ814849_BatACV3	54.1	53.5	54.7	56.0	55.8	55.4	55.0	59.3	100.0																	-	- 71
>KT783484_BatACV4	54.8	52.0	55.6	54.6	56.5	53.6	56.2	57.0	74.7	100.0																	-66
>KJ641711_BatACV8	54.5	53.2	54.5	55.6	54.8	53.4	56.2	54.1	56.9	54.7	100.0																
>KJ641727_BatACV5	55.0	53.1	52.7	53.0	56.4	54.0	55.6	55.7	56.9	54.8	69.3	100.0															61
>KJ641723_BatACV7	53.3	51.6	51.3	52.4	53.1	53.0	56.0	53.8	55.0	54.5	60.8	61.3	100.0														- 56
>KJ641724_BataCV6	53.9	52.6	55.1	52.3	54.1	55.3	57.2	54.2	56.8	56.1	61.1	61.6	64.1	100.0													
>AF012107_PCV1	54.3	56.4	51.3	54.3	54.4	54.5	55.7	55.0	52.5	52.7	53.9	53.7	53.7	51.6	100.0												
>DQ172906_StCV	52.5	54.8	54.1	55.0	53.9	56.0	53.0	56.4	55.4	55.8	55.0	55.7	53.4	54.5	65.6	100.0											
>GQ404851_ChimpACV	54.8	54.2	52.4	53.5	54.2	51.8	53.1	51.6	53.8	53.9	54.4	56.7	54.4	54.3	66.2	68.0	100.0										
>AI301633_CaCV	53.1	52.5	51.1	54.1	53.6	53.5	54.5	52.8	54.2	54.7	53.4	54.3	53.0	54.7	59.9	64.7	62.6	100.0									
>DQ146997_RaCV	54.0	55.0	53.2	54.5	54.3	53.5	56.1	52.4	55.5	56.9	55.5	55.3	54.9	53.4	62.9	64.3	62.7	67.8	100.0								
>DQ845075_FICV	52.9	51.8	54.3	55.7	53.6	54.7	54.5	53.4	54.6	55.0	54.0	54.8	54.2	54.2	64.0	65.3	62.6	65.5	65.1	100.0							
>KP793918_ZfiCV	55.1	55.5	53.5	53.2	53.0	53.7	53.4	53.7	54.3	54.5	55.4	55.0	52.9	56.6	62.4	63.7	65.6	64.8	64.8	78.2	100.0						
>DQ845074_GuCV	52.3	53.2	52.5	53.6	54.7	54.8	51.8	55.1	55.7	55.5	54.6	53.5	53.1	52.6	60.3	60.2	58.4	62.1	59.8	61.9	60.5	100.0					
>AF252610_PICV	54.7	54.9	52.2	54.1	54.9	54.5	54.7	54.5	54.1	54.7	54.8	53.6	53.0	53.7	58.9	60.2	57.8	60.6	59.8	60.4	60.6	56.5	100.0				
>GQ404856_HuACV	51.7	52.4	53.0	52.3	53.8	53.6	56.2	54.7	54.2	55.0	53.7	55.5	52.7	53.6	55.0	52.7	51.9	54.4	52.6	54.6	52.3	54.4	54.8	100.0			
>GU799606_BarCV	55.6	53.7	52.1	51.7	52.8	54.0	53.0	54.1	53.5	54.0	53.5	53.7	52.6	52.4	52.8	54.9	53.0	52.1	52.3	54.1	52.8	54.4	52.6	58.2	100.0		1
>JQ011377_EcatfishCV	51.9	51.6	54.3	55.9	54.4	56.5	54.3	55.8	53.0	55.0	53.9	54.3	51.7	52.0	55.3	57.1	53.9	54.9	52.8	55.7	54.6	54.0	52.0	56.2	55.4	100.0	
>JO821392_CanineCV	54.5	55.2	51.9	52.9	53.8	54.6	56.7	55.0	54.5	53.2	53.2	54.4	54.2	54.8	55.5	52.9	53.7	54.6	52.7	54.6	53.0	53.7	54.0	54.1	535	54.7	100.0
>Beaked_whale	48.7	51.0	50.2	54.2	51.7	50.8	50.6	50.0	55.1	49.5	51.7	51.4	51.1	51.2	49.2	52.7	51.5	49.6	50.6	51.9	48.8	50.7	49.9	51.5	49.2	50.8	51.5 100.0

- X < 80% = new species
- Range of all CVs = 48.7-78.2%
- Range of all CVs to BWCV = $48.7-54.2\% \rightarrow 1^{st}$ marine mammal CV!

BWCV Diagnostic PCR

- 1. Lung
- 2. Cerebrum
- 3. Cerebellum
- 4. Scapular LN
- 5. Mediastinal LN

Conclusions/Future Directions

- Our stranded Longman's beaked whale was co-infected with alphaherpesvirus, BWMV & BWCV
- This is the first description of a circovirus in a marine mammal
 BWCV can be considered a new species because X < 80%
- The presence of the virus and its role in disease is yet to be proven
 - Positive PCR screening for BWCV on all tissues suggest a systemic infection and/or circulation in the blood
 - Future Direction:
 - *in situ* hybridization (ISH)

References

- 1. Jacob JM, West KL, Levine G, Sanchez S, Jensen BA. 2016. Initial characterization of novel beaked whale morbillivirus in Hawaiian cetaceans. Dis Aquat Org 117:215-227.
- 2. Niederwerder MC, ...Rowland RR. 2015. Vaccination with a Porcine Reproductive and Respiratory Syndrome (PRRS) Modified Live Virus Vaccine Followed by Challenge with PRRS Virus and Porcine Circovirus Type 2 (PCV2) Protects against PRRS but Enhances PCV2 Replication and Pathogenesis Compared to Results for Nonvaccinated Cochallenged Controls. Clin Vaccine Immunol, 22(12):1244-1254.
- 3. PCVD The Control of Porcine Circovirus Diseases (PCVDs): Towards Improved Food Quality and Safety. (n.d.). Retrieved March 29, 2017, from <u>http://www.pcvd.net/</u>.
- 4. Poogin. 2013. How Can Plant DNA Viruses Evade siRNA-Directed DNA Methylation and Silencing?. Int. J. Mol. Sci, 14(8):15233-15259.
- West KL, Sanchez S, Rotstein D, Robertson KM, Dennison S, Levine G, Davis N, Schofield D, Potter CW, Jensen B. 2013. A Longman's beaked whale (*Indopacetus pacificus*) strands in Maui, Hawaii, with first case of morbillivirus in the central Pacific. Mar Mammal Sci 29:767-776.

Acknowledgments

- Co-authors:
 - Dr. Kuttichantran Subramaniam
 - Dr. Terry Fei Fan Ng
 - Dr. Kristi West
 - Dr. Thomas B. Waltzek
 - Dr. David S. Rotstein
- Patrick Thompson
- WAVDL crew

Thank you! Questions?

