

Practical bone histomorphometry in mice

Reinhold G. Erben, M.D. D.V.M.

Department of Biomedical Sciences University of Veterinary Medicine Vienna

Purpose of histomorphometry

Histomorphometry is always related to mechanistic questions or safety issues

- Bone structure
- Bone formation
- Bone resorption
- Bone mineralization
- Bone modeling and remodeling
- Osteocyte lacunae

Age-related changes in the femur

 \Rightarrow The distal femur is more suitable for histomorphometry than the proximal tibia in mice.

 \Rightarrow Age-related osteopenia can make a sound analysis of cancellous bone impossible in the distal femoral metaphysis of aged mice.

Age-related changes in vertebrae

\Rightarrow Always take out the verts in aged mice! Use frontal sections.

Embedding methods

Distal femur and vertebrae

• MMA mixture suitable for histochemistry (Erben, J Histochem Cytochem 45:307,1997)

Cortical cross-sections & implants

• Conventional MMA embedding (80% MMA, 20% dibutylphthalate, 3% benzoylperoxide)

More information: Erben & Glösmann (2019) Histomorphometry in Rodents. Methods Mol Biol 1914:411-435

Routine stains

Distal femur and verts

- Von Kossa/McNeal's tetrachrome
- TRAP staining
- (Cement line stain)

Microground cortical bone cross-sections&implants

• Toluidine blue

How to measure structural parameters

Primary measurements

- **Tissue area**
- Bone area
- **Bone perimeter**
- Number of structural elements

Distance from growth plate: Femur: 500 µm in 3 - 4-week-old mice, 250 μ m in mice \geq 2 mo of age

Vertebrae: 250 µm

 \rightarrow Histomorphometry expresses in numbers that what you see

How to measure turnover parameters

Distance from growth plate: 250 µm typically 500 µm in young, fast-growing mice Measurement at x200 or x400

Bone turnover. Bone formation

Primary measurements

- Mineral apposition rate
- Mineralizing perimeter (double labeled perimeter or D.L.Pm + 0.5 * S.L.Pm)

 Bone formation rate (BFR/B.Pm = BFR/BS)
Marker interval (cancellous bone formation!)
24 h in 3 – 4-wk-old mice
48 h in 8 – 12-wk-old mice

2 - 3 days in aged mice >5 mo

 \rightarrow Allow for enough time (1 day) between last label and sampling!

 \rightarrow More information: Erben RG (2003) Bone Labeling Techniques. In: Handbook of Histology Methods for Bone and Cartilage. An YH, Martin KL (eds) Humana Press Inc., Totowa, NJ, USA, pp 99 – 117

Labeling escape error

 \Rightarrow To minimize the labeling escape error, the marker interval should be less than about 1/5 of the formation period.

> From: Erben RG (2003) Bone Labeling Techniques. In: Handbook of Histology Methods for Bone and Cartilage. An YH, Martin KL (eds) Humana Press Inc., Totowa, NJ, USA, pp 99 – 117

Bone remodeling in mice

Murine vertebral cancellous bone

Bone turnover. Bone formation

Primary measurements

- Mineral apposition rate
- Mineralizing perimeter (double labeled perimeter)

Bone formation rate (BFR/B.Pm = BFR/BS)

Marker interval (cancellous bone formation!)

24 h in 3 – 4-wk-old mice 48 h in 8 – 12-wk-old mice

2 - 3 days in aged mice >5 mo

Bone resorption. TRAP staining

Bone turnover. Bone resorption

Primary measurements (only nucleated cells in contact with bone are counted!)

- Osteoclast number (no./mm or no./mm²)
- Osteoclast perimeter (Oc.Pm/B.Pm, %)

Bone turnover. Bone resorption

Bone mineralization/formation Osteoid & Osteoblasts

Primary measurements in von Kossa/McNeal-stained sections

- Osteoid width (O.Wi, μm)
- Osteoid perimeter (O.Pm/B.Pm, %)
- Osteoid area (O.Ar/B.Ar, %)
- Osteoblast perimeter (Ob.Pm/B.Pm, %)

Modeling and Remodeling

Modeling

- Activation ⇒ Resorption, Activation ⇒ Formation
- Continuous process
- Induction of resorption and formation drifts in trabecular (mini-modeling) or cortical bone (macromodeling): ⇒ Always goes along with changes in shape!
- Fast: adapts a structure within days
- Function: dynamic adaptation mechanism to changes in biomechanical strain

Remodeling

- Activation ⇒ Resorption ⇒ Formation
- Cyclical process
- *Cortical bone:* leaves behind osteons. *Trabecular bone:* reconstitutes bone surface more or less in its original shape.
- Slow: takes weeks to months to complete
- Function: renewal mechanism in biomechanical steady state

Cancellous bone remodeling in mice?

Remodeling-based parameters

Primary measurements

- Bone perimeter
- Osteoid perimeter
- Eroded perimeter
- Wall width
- Wall width (W.Wi, μm)
- Resorption period (Rs.P, d)
- Formation period (FP, d)
- Remodeling period (Rm.P, d)
- Activation frequency (Ac.F, 1/y)

W.Wi \geq 15 sites, 4 measurements per site

Active FP = W.Wi/MAR All other periods are calculated based on the length of the FP: ("fractions of space are equivalent to fractions of time", e.g., Rs.P = ES/OS * FP Rm.P = Rs.P + FP Ac.F = 1/Tt.P = 1/(FP * BS/OS)

Cortical bone remodeling?

Rabbit

Toluidine blue surface stain

Mouse

Mouse

Analysis of cortical bone cross-sections vetmedun

Primary measurements

- Cortical bone area •
- **Cross-sectional area** .
- Marrow area ٠
- Periosteal perimeter
- **Endocortical perimeter** ٠
- **Cortical thickness** •
- Ps. and Ec. MAR + M.Pm

 \Rightarrow The femoral midshaft is usually used for cortical bone analysis in mice.

Analysis of osteocytes

Primary measurements

- Osteocyte lacunar area (Ot.Lc.Ar, µm²) ٠
- Osteocyte number (Ot.N, no./mm²) •

Wildtype

Take home messages

- Always take out vertebrae in aged mice.
- Consider gender differences in mouse experiments.
- For the quantification of osteoclasts always use TRAP staining.
- For the assessment of bone formation fluoro-chrome labeling with an appropriate marker interval is essential. Consider different marker intervals for cancellous and cortical bone.
- Mice lack true Haversian cortical bone remodeling, but not cancellous bone remodeling activity.

More information

Erben & Glösmann (2019) Histomorphometry in Rodents. Methods Mol Biol 1914:411-435

Ma, Burr & Erben (2019) Bone histomorphometry in Rodents. In: Principles in Bone Biology. Bilezikean et al (eds), Elsevier, pp 1899-1922

<u>www.bonemorphometry.org</u> (members-only section)

Dempster DW et al. 2013 Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 28:2-17