Identification of *Urochloa humidicola* hybrids with waterlogging tolerance and Biological Nitrification Inhibition (BNI) capability

Ashly Arevalo; Jacobo Arango; Valheria Castilbanc; Juan Andrés Cardoso.
International Center for Tropical Agriculture (CIAT) - Tropical Forages Program, Colombia. CONTACT: a.arevalo@cgiar.org | la.cardoso@cgiar.org

Introduction

Soil waterlogging (flooding of the soil) is a major limitation to pasture productivity due to the slow diffusion of gases in water that reduces plant growth, as O₂ availability in the root zone decreases (Cardoso et al., 2014). Biological nitrification inhibition (BNI) is a process where roots exude organic substances that inhibit the activity of soil nitrifiers - nitrification (Subbarao et al., 2009, Nunez et al., 2017).

Urochloa humidicola (Uh) is an important forage grass in humid lowland tropics that has been identified and characterized for having good waterlogging tolerance (Keller-Grein et al. 1996; Calisto et al. 2008; Cardoso et al., 2013) and high soil nitrification inhibitory potential (Subbarao et al, 2007; Gopalakrishnan et al., 2007).

Objective

To evaluate the variation in waterlogging tolerance and BNI of twenty seven hybrids of *Urochloa humidicola* developed by the *Urochloa* breeding program of CIAT. Two commercial cultivars of *Urochloa humidicola* (cvs. Tully and Llanero) were included for comparison purposes (checks).

Materials and Methods

Waterlogging tolerance test

Shoot growth (pixels) was measured in plants growing in a top Oxisol which was mixed with river sand in a proportion of 2:1 (w/w) and fertilized to avoid nutrient deficiencies. Plants were planted into PVC pipes of 80 cm high and 7.5 cm diameter in a factorial combination of two drainage conditions: drained (field capacity) and waterlogged.

The trial was established in a four replicate randomized complete block, for 23 days under greenhouse conditions. Shoot growth was estimated as in Jiménez et al (2017).

Potential nitrification

Soil nitrification potential was measured to evaluate BNI capacity from top soil samples taken in plots of 1m² using a modified shaken slurry procedure (Hart et al., 1994, L. He et al. 2018) One g of soil (air-dried) was mixed with 10mL assay solution (30mM KH₂PO₄; 0.7mM K₂HPO₄ and 0.75mM ammonium sulfate, pH = 7.2) in a 50 mL covered flask. Then, incubated at 120 rpm at 25 °C. Potential nitrification rates were determined at 0h, 24h, until 96h to calculate the slope of a linear regression of (NO₃⁻−N) production versus time.

Results

Two hybrids were identified as promising based on similar biomass to that of Brachiaria cv. Tully and Llanero (Figure 1).

Conclusions

We identified one *Urochloa humidicola* hybrid (Uh16-1351) with both waterlogging tolerance and high BNI capacity. This promising hybrid needs to be further tested under field conditions.

References

Calistro V; Echeverría MR; Marín FL; Núñez J; Subbarao GV; Rondon M; Ito O; Ishikawa T; Rao IM; Nakahara K; Lascano C; Berry WL. 2007. Biological nitrification inhibition (BNI) in a soil-grown biparental population of the forage grass *Brachiaria humidicola*. Plant and Soil 296:301–315. doi: 10.1007/s11104-007-9340-0

Subbarao GV; Rondon M; Ito O; Ishikawa T; Rao IM; Nakahara K; Lascano C; Berry WL. 2007. Biological nitrification inhibition (BNI)—is it a widespread phenomenon? Plant and Soil 294:5–18. doi: 10.1007/s11104-006-9219-3

Nuñez J; Arevalo A; Kenedi H; Eggnall K; Miles J; Chirinda N; Cadisch G; Racche F; Raci I; Subbarao G; Arango J. 2018. Biological nitrification inhibition activity in a soil greenhouse population of the forage grass, *Brachiaria humidicola*. Journal of Agronomy 20:1–10. doi: 10.15626/m.AJGRA.2018.20.1.000205

Contact

Ashly Arevalo: a.arevalo@cgiar.org

Juan Andrés Cardoso: la.cardoso@cgiar.org

International Center for Tropical Agriculture (CIAT), Cali, Colombia. p. 16–42. 37th IFTFC Congress, 26−27 March 2019, Lake Buena Vista, FL, USA

Acnowledgements

The authors would like to acknowledge support from the UK Research and Innovation U4ACE Global Challenges Research Fund (GCRF) GROW Colombia grant under the U4ACE Biotechnology and Biological Sciences Research Council (BB/P020358/1). The work was conducted as part of the CGIAR Research Program on Livestock, and is supported by contributors to the CGIAR Trust Fund. CGIAR is a global research partnership for a food-secure future. Its science is carried out by 15 Research Centers in close collaboration with hundreds of partners across the global. www.cgiar.org