Determining ideal sites for a pilot experiment in Colombia to trial new forages in East Africa

Hannah Oliphant1, Brayan Mora1, Julián Ramirez-Villegas2, Valerien Castiblanco1
1International Center for Tropical Agriculture (CIAT) - Tropical Forages Program, Colombia. CONTACT: vcastiblanco@cgiar.org
2CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Colombia.

Introduction

The livelihood of approximately 37 million people of the East African (EA) region is highly dependent on livestock. As the pressure for livestock products heightens with growing populations, already harsh environmental conditions are predicted only to worsen (Fisher et al. 2005; Thornton et al. 2007). In Cali, Colombia, the International Center of Tropical Agriculture (CIAT) is leading a cutting edge new breeding programme by developing improved forage varieties specially designed to succeed in the East African market. Logistic and regulatory constraints make it an infeasible task to test the roughly three thousand hybrids produced in each breeding cycle on-site in East Africa. Our research shows how to effectively and remotely identify an experimental site in Colombia which can represent the climate and soil conditions existing in East Africa, thereby ensuring that the appropriate abiotic constraints are present in the first selection phase trials.

Materials and Methods

Cluster analysis

Characterise environmental zones of East Africa into separate environmental clusters based on the following information associated with each pixel:
- Areas of high livestock density (Ramankutty et al., 2008)
- Areas of annual precipitation > 700 mm
- Qualitative soil data (Hengl et al., 2014)
- Environmental data: Annual consecutive days of precipitation > 1 mm (CDD); Total annual rainfall (TR); Annual average rainfall over 5 days (PSD); Annual 95th percentile of precipitation (P95); Annual average vapor pressure deficit (VPD) (Ruane et al. 2015; Funk et al. 2016).

A distance matrix was generated according to Gower’s distance to derive hierarchical clusters.

Results

Table 1: Cluster comparison of the environmental zones of East Africa.

<table>
<thead>
<tr>
<th>Cluster 1 Medium-bad</th>
<th>Cluster 2 Good</th>
<th>Cluster 3 Hostile</th>
<th>Cluster 4 Medium-good</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR</td>
<td>Mean</td>
<td>Slope</td>
<td>Mean</td>
</tr>
<tr>
<td>CDD</td>
<td>152.83</td>
<td>20.50</td>
<td>71.97</td>
</tr>
<tr>
<td>TR</td>
<td>966.5</td>
<td>153.38</td>
<td>0.66</td>
</tr>
<tr>
<td>PSD</td>
<td>18</td>
<td>4.19</td>
<td>-0.20</td>
</tr>
<tr>
<td>P95</td>
<td>15.35</td>
<td>2.16</td>
<td>-0.019</td>
</tr>
<tr>
<td>VPD</td>
<td>1.53</td>
<td>0.113</td>
<td>0.00101</td>
</tr>
</tbody>
</table>

Discussion and Conclusion

Here, we have presented a highly valuable method for measuring site similarity for future trials that will provide vital information for targeting genotypes to environments. We have successfully selected possible sites in Colombia for the initial testing and first culling of improved forages, which are representative in climate and soil conditions of the four East African clusters. The outcome of this analysis of environments will be compared against analysis of genotype by environment interaction from phenotypic data from each of the identified clusters. Using the entirely free R software, the method can be performed remotely and is easily replaceable for other breeding programs and other regions. This method deviates slightly away from the traditional sense of looking to match genotypes to their most appropriate environmental niches (Hyman et al. 2013; Alabi et al. 2019) and propose instead to develop genotypes adapted to the target environmental conditions. Future analyses will include different climate change scenarios. From there, we can determine sites, which are similar to those of East Africa in 50 years from now, and use them to identify resilient hybrids under future climate predictions. This opens the door for plant breeders to choose testing sites in the present that are representative for target populations of future environments.

References

Funk C; Peterson P; Landsfeld M; Pedreros D; Verdin J; Shukla S; Husak G; Rowland J; Harrison L; Hoell A; Michaelsen J. 2015. The climate hazards

Ruane AC; Goldberg R; Chryssanthacopoulos J. 2015. Climate forcing datasets for agricultural modeling: Merged products for gap-filling and historical

Acknowledgements

This work was conducted as part of the CGIAR Research Program on Livestock, and is supported by contributors to the CGIAR Trust Fund and The
Pastoralla Group. CGIAR is a global research partnership for a food-secure future. Its science is carried out by 15 Research Centers in close
collaboration with hundreds of partners across the globe. www.cgiar.org