Phenotyping of *Brachiaria humidicola* hybrids for its BNI potential, biomass production, forage quality and \(\text{N}_2\text{O} \) Emissions

March 25, 2019

IFTBC conference, Orlando - USA

Jacobo Arango\(^1\), Ashly Arevalo\(^1\), Daniel Villegas\(^1\), Jonathan Nuñez\(^1,2\), Danilo Moreta\(^1\), Valheria Castiblanco\(^1\), Idupulatapti Rao\(^1,3\), Manabu Ishitani\(^1\)

\(^1\)International Center for Tropical Agriculture (CIAT), Cali, Colombia. \(^2\)Present address: Landcare Research, Lincoln, New Zealand; \(^3\)Present address: Plant Polymer Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, US.

ciat.cgiar.org
CIAT: Three breeding programs in Tropical Grasses

Interspecific - *Brachiaria decumbens* / *brizantha* / *ruziziensis*
1990

Robust, tolerant to low fertility.

Characteristics to be improved: Spittlebug resistance, persistence, seed production and abiotic stress.

ciat.cgiar.org

Brachiaria humidicola
2010

Robust, tolerant to low fertility, tolerant to waterlogging and high BNI.

Characteristics to be improved: Nutritional quality, spittlebug resistance, seed production, abiotic stress.

Panicum maximum
2016

High quality and biomass production. Double purpose forage and high BNI.

Characteristics to be improved: Abiotic stress.

Please visit posters # 17 to 21!

Dr. Valheria Castiblanco

Building a sustainable future
Brachiaria humidicola program: Recurrent Selection

CIAT (Sexual) → CIAT 26149 (Apomictic) cv “Tupí”

Sexuals (14 genotypes) × Apomictic ACC (21 genotypes)

Bh08 population

Sexuals → Apomictic

First synthetic population of tetraploid sexuals in B. humidicola CIAT’s hybrid breeding for Recurrent Selection

High biological nitrification inhibition and biomass
- [BNI, CIAT-16888 (Subbarao et al. 2009)]
- Cv. “Antioqueña” (ICA 2017)

High waterlogging tolerance
- CIAT-6570, CIAT-6013, CIAT-6133 and CIAT-679 (Cardoso et al. 2013, 2014)

Spittlebug tolerance
- CIAT-6133 [previously identified as B. dictyoneura (Fig. & De Not.) Stapf]
- “Llanero” cultivar (ICA 1987)
Why Inhibit Nitrification?

Nitrification is one of the major causes of nitrogen loss from agricultural systems (up to 70% of the N fertilizer applied is lost to the environment)

Direct annual economic loss

$81 Billions

U.S. Dollars*

*Based on a world annual N fertilizer production of 150 million Mg, US$ 0.50 kg⁻¹ urea. Source: Galloway et al., 2008.

ciat.cgiar.org
Apomictic hybrids of *B. humidicola* (Bh) BH08 population

Year 2012:

Evaluation of 118 hybrids of *B. humidicola* (Bh) for their growth and nutritive value and their potential ability to inhibit nitrification in soil under greenhouse conditions.

Objective:

To identify contrasting hybrids with different levels of BNI and the selection of a set of 12 contrasting hybrids for subsequent field evaluations.

(Pre-breeding, methodology development and potential hybrid identification)
Soil nitrification rate for 118 apomictic *B. humidicola* hybrids

- High BNI 1149 (low nitrification rate)
- 1250 (high nitrification rate)
Twelve contrasting *Bh* hybrids BH08 selected for field evaluation

<table>
<thead>
<tr>
<th>Bh08 hybrid</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>1149</td>
<td>B. humidicola CIAT 26159 (high BNI)</td>
</tr>
<tr>
<td>450</td>
<td>B. humidicola CIAT 16888 (high BNI)</td>
</tr>
<tr>
<td>1250</td>
<td>B. humidicola CIAT 679 (high BNI)</td>
</tr>
<tr>
<td>0700</td>
<td>B. humidicola CIAT 26146 (parental)</td>
</tr>
<tr>
<td>696</td>
<td>B. humidicola CIAT 26149 (parental)</td>
</tr>
<tr>
<td>1155</td>
<td>Brachiaria hybrid cv. Mulato II CIAT 36087 (low-inter. BNI)</td>
</tr>
<tr>
<td>422</td>
<td>Panicum maximum CIAT 16028 (intermediate BNI)</td>
</tr>
<tr>
<td>0680</td>
<td>Bare soil: negative control (no plants)</td>
</tr>
<tr>
<td>0675</td>
<td></td>
</tr>
<tr>
<td>1248</td>
<td></td>
</tr>
<tr>
<td>1243</td>
<td></td>
</tr>
<tr>
<td>0022</td>
<td></td>
</tr>
</tbody>
</table>
Field evaluation 2014-2018

Study location: Agrosavia-La Libertad Research Center ("Llanos" region of Colombia)

- **Altitude:** 336 m.a.s.l.
- **Annual mean temperature:** 26 °C
- **Annual mean rainfall:** 2,933 mm
- **Soil order:** Oxisol

Soil chemical analysis (20 cm depth) of field site

- **pH:** 4.91
- **OM:** 30.34 g/kg
- **P:** 14.37 mg/kg
- **Al:** 1.30 cmol/kg
- **Ca:** 1.10 cmol/kg
- **Mg:** 0.38 cmol/kg
- **K:** 0.11 cmol/kg
- **CEC:** 2.89 cmol/kg
- **Al-saturation:** 44.95%
Field trial

Experimental design: RCB, 3 replications
Experimental unit: 4x4 m plot
(60 experimental units in total)
Planting density: 10,000 plants/ha
(16 plants/plot)
Planting date: August 29, 2013
Fertilizers mixture rates (Kg/ha):
100 N (urea), 25 P (DAP), 50 K (KCl), 50.5 Ca, 14.2 Mg, 10 S, 0.44 B, 0.09 Cu and 2.6 Zn.
Measurements from field evaluation 2014-2017

Forage yield
- Biomass production

Forage quality parameters:
- Crude protein (CP)
- In vitro dry matter digestibility (IVDMD)
- Neutral and Acid detergent fiber (NDF, ADF)

Wet season

Dry season

NIRS Foss 6800
Soil nitrification rates measured during the rainy season

5 g of rhizosperic soil

Basal N

NH_4^+
27 mM

NH_4^+ and NO_3^- quantification

Incubation at 25°C

11 15 19 27 days

NH_4^+ and NO_3^- quantification

Nitrification rate (mg N-NO$_3$ kg soil$^{-1}$ day$^{-1}$)

High nitrification rate \sim Low BNI capacity!
Measurement of N\textsubscript{2}O emission in the field using a portable FTIR Gas analyzer

Timeline (in days)

Daily measurements (per chamber)

- Soil moisture
- Soil temperature
- Nitrous oxide

2 chambers per each plot (6 chambers per genotype)

- Soil sampling each every 2 days to measure mineral nitrogen

ciat.cgiar.org
Comparison of *Bh* hybrids in the field evaluation from 2014 to 2017

Bh 1149 is a promising hybrid:
Low BNI + High yield + High nutrition quality

3D visualization of a principal component analysis based on forage yield (Axis 1), nutrition quality-crude protein (Axis 2), nitrification rates (Axis 3)
A. Hierarchical Cluster using PCA;
B. Representation comparing hybrids vs control genotypes
N$_2$O emissions from *Brachiaria* hybrids BH08 are lower than bare soil control

A N$_2$O emissions from bare soil

B Bar plot showing cumulative N$_2$O emissions. Asterisk indicates significant difference according to Dunn test p<0.05

N$_2$O emissions from *Brachiaria* hybrids BH08 (450, 675, 680, 700 and 1149) and controls Bh 679 cv. Tully (high BNI) and Bare Soil in the rainy season of 2018. **A.** N$_2$O emissions from *Brachiaria* hybrids BH08 during 11 days after fertilization. **B.** Bar plot showing cumulative N$_2$O emissions. Asterisk indicates significant difference according to Dunn test p<0.05.
This work was conducted as part of the CGIAR Research Programs on Livestock and CCAFS, and is supported by contributors to the CGIAR Trust Fund and Federal Ministry for Economic Cooperation and Development of Germany. CGIAR is a global research partnership for a food-secure future. Its science is carried out by 15 Research Centers in close collaboration with hundreds of partners across the globe. www.cgiar.org

REFERENCES: Galloway JN; Townsend AR; Erisman JW; Bekunda M; Cai Z; Freney JR; Martinelli LA; Seitzinger SP; Sutton MA. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science 320:889-892. DOI: 10.1126/science.1136674

j.arango@cgiar.org

Please visit posters # 17 to 21!