Determining the Feasibility of Biological Control of a Weed Target

Carey R. Minteer¹, Greg Wheeler², Paul Madeira², and Matt Purcell³

¹University of Florida, Fort Pierce, FL, USA
²USDA-ARS Invasive Plant Research Laboratory, Fort Lauderdale, FL USA
³USDA-ARS Australian Biological Control Lab, Brisbane, Australia
Invasive plants
Biological Control

Positive
- Safe (Host specific)
- Self perpetuating
- Spreads to new areas
- Environmentally friendly
- High return on investment

Negative
- High up front cost
- Slow
- Will not eradicate pest
- Doesn’t always “stick”
However.....

• Not all weeds are amenable to biocontrol

• Several challenges.....
 – Closely related (or chemically similar) to
 • economically important species
 • threatened/ endangered species
 – Difficult to find host-specific agents
 – Conflicts of interest
 • Beekeepers
 • Nurseries/Horticulture
 • Culturally significant
Feasibility studies.....

- Biocontrol is expensive on the front end
 - Difficulty in finding host-specific biocontrol agents
 - Potential conflicts of interest

- Prudent to do a feasibility study before start of biocontrol program
 - Cost-effective
 - Can uncover hidden challenges before the initiation of a BC program
 - Assist in determining likelihood of success
Feasibility study

– Nature of damage (ecological/economic)
– Origin/ geographic distribution
– Taxonomy/ closely related plants (molecular/traditional)
 • Potential risks to native plants
– Secondary plant chemistry (relevance to herbivory)
– Recommended species test list
– Conflicts of interest
– Recommendations
Earleaf acacia

- Native to Northern Australia, Papua New Guinea, and Indonesia
- Introduced into US intentionally ornamental
 - Hawaii - 1920s
 - Florida - 1930s
Nature of damage
(ecological/economic)

• Allelopathic
• Host for the lobate lac scale
• Brittle wood paired with weak branch crotches
 – badly damaged during wind storms/hurricanes
• Allergenic (pollen)
Origin/ geographic distribution

- Native to Northern Australia, Papua New Guinea, and Indonesia
Origin/ geographic distribution

EDDMapS, 2016
Taxonomy

• Molecular phylogeny
 – extracted DNA from subfamilies Mimosoideae, Caesalpinioideae, and Papilionoideae
 • emphasis on the native Mimosoideae taxa (most closely related to earleaf acacia)
 – rbcL gene
 – Sequences from 335 taxa (extracted and GenBank)

• Identify potential risks to closely related native plants
Recommended species test list

• Based on molecular phylogeny,
• Threatened and endangered plants,
 – Fabaceae and closely related families
• Economically important species
• Plants with similar secondary plant chemistry
Conflicts of Interest

• Used as an ornamental (not recommended)
• Medicinal (potential)
 – antifilarial (Ghosh et al. 1993), an anticestodal (Ghosh et al. 1996), and an antifungal (Mandal et al. 2005)
• Supplemental food source for big cypress fox squirrels (endangered)
Preliminary foreign surveys

- Leaf feeders (5)
- Stem/leaf gallers (3)
- Leaf miners (1)
- Seed feeders (2)
- Sap suckers (1)
Recommendation for earleaf acacia

- No evidence to abandon pursuing a BC program
- Potential for success in finding host specific agent
- Next steps:
 - Continue with foreign surveys
 - Begin preliminary host range testing of candidate agents (in native range)
Acknowledgements

• Zizah Blair – USDA-ARS
• Zack Ramilevich – USDA-ARS
• Bradley Brown - CSIRO
• Jeff Makinson - CSIRO
• Ryan Zonneveld - CSIRO