Revisiting Everglades Species Ecological Models for Planning & Assessment

Leonard Pearlstine¹, James Beerens², Stephanie Romañach², Dilip Shinde¹, Jay Sah³, Mike Ross³, Laura A Brandt⁴, Amy Nail⁵

¹ National Park Service, ² U.S. Geological Survey, ³ Florida International University, ⁴ U.S. Fish & Wildlife Service, ⁵ Honestat Statistics & Analytics
Everglades Ecological Modeling

2012EC
Daily depths

Alt4r2
Daily depths

Species Models
Everglades Ecological Modeling

Multiagency & university improvements underway on:

• Cape Sable seasidesparrow model
• Americanalligator production model
• Everglades landscape vegetation succession model (ELVeS)
• Adaptation of the models to near real-time forecasting
Cape Sable Seaside Sparrow

CSSS abundance 2000-2015
birds/survey
- 0.04 - 0.25
- 0.26 - 0.50
- 0.51 - 0.75
- 0.76 - 1.00
- 1.01 - 2.14

Year
CSSS count / survey

Cape Sable Seaside Sparrow

Water Depth Mean

4 year Hydroperiod Mean

Percent Dry > 90 Days

Predicted Sparrows (log)

Recession
Ascension

Dry Days
Wet Days
Cape Sable Seaside Sparrow

Quadratic fit, $R^2 = 0.0162$

exclude bins with count < 30
bin size = 10 m

Gaussian Fit
mu = -201.07
sigma = 166.65
k = 0.0043
Cape Sable Seaside Sparrow

FIRE

Spatio-Temporal auto correlation

Mean Bird Count (BC) for each Year Post Burn (PB)

2004 2005

2006 2007

GEER 2017
Alligator

Alligator Production Probability Index

Habitat
Breeding
Courtship/Mating
Nest Building
Nest Flooding

P(alligator production) = [P(H) P(NF|NB)] / [P(H) P(NF|NB) + (1 - P(H)) (1 - P(NF|NB))]

GEER 2017
Alligator
Alligator

NSPM: Effect of Upand Edge

Upland Edge:
- 0%
- 40%

Average Water Depth (June 15 - July 15), cm

Nest Sighting Probability

-0.00
-0.04
-0.08
-0.12

ENP SRF
Nest Count in Grids

LOX Plot
Nest Count in Grids

Independent Variable(s)
(e.g. C&M water depth)

- What is the relationship?
- Does the relationship match expectations?
- What is dissimilarity of ENP vs LOX?

GEER 2017

Joint Ecosystem Modeling

FIU
Florida International University

USGS
US Geological Survey

NATIONAL PARK SERVICE
Alligator

Additional exploratory variables:

1. Proximity to canals and roads
2. Proximity to and strength of storm events
3. Temperature & precipitation
Vegetation Succession

Everglades Landscape Vegetation Succession (ELVeS)

Salinity → Storm Impacts Module → Storm Impacts Preprocessor → Hydrology Preprocessor

Hydrology → Fire Impacts Module → Fire Impacts Module

Soil Nutrients → Input

Ranked Probabilities

Joint Conditional Probability of transition to Community j?

Probability of Selected Community > Existing Community?

Keep Current Community

Sawgrass probability

Truth for Nth consecutive year?

Accept Selected Community

GEER 2017

Joint Ecosystem Modeling
Vegetation Succession

Explore models that discriminate among Marl Prairie vegetation assemblages
- along hydrologic gradient,
- soil characteristics,
- fire occurrences and
- neighborhood prevalence/absence of like communities and fire history

Minimum Water Depth

- Muhlenbergia + Schizachyrium + Schoenus
 - Wet Prairie
- Cladium
 - Wet Prairie
- Cladium
 - Marsh
- Cladium-Rhynchospora
 - Marsh
- Rhynchospora-Eleocharis
 - Marsh
Vegetation Succession

Marl Prairie Fuel Model/Fire Behavior Module

- Fire history
- Pre-burn Fuel load
- Pre-burn Hydrology
- Weather (RH, wind & others)
- Prescribed/Wild Fire
- Fire Severity/Area burned
- Post-burn Vegetation recovery
- Post-burn Hydrology
 - Flooding (Enhanced Hydroperiod)
 - Short Hydroperiod
 - Wet sparse vegetation
 - Wet Prairie (Improved CSSS habitat)
 - Post-burn vegetation
Real-Time Decision Support

Weighted Decision Table

<table>
<thead>
<tr>
<th>Sim</th>
<th>CSSS</th>
<th>GREG</th>
<th>WHIB</th>
<th>WOST</th>
<th>PYTHON</th>
<th>GLOBAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sim 73</td>
<td>66</td>
<td>83</td>
<td>84</td>
<td>65</td>
<td>61</td>
<td>71.8</td>
</tr>
<tr>
<td>Sim 15</td>
<td>64</td>
<td>82</td>
<td>78</td>
<td>69</td>
<td>50</td>
<td>68.6</td>
</tr>
<tr>
<td>Sim 26</td>
<td>61</td>
<td>84</td>
<td>81</td>
<td>66</td>
<td>42</td>
<td>66.8</td>
</tr>
<tr>
<td>Sim 74</td>
<td>60</td>
<td>86</td>
<td>70</td>
<td>26</td>
<td>79</td>
<td>64.2</td>
</tr>
<tr>
<td>Sim 93</td>
<td>52</td>
<td>71</td>
<td>57</td>
<td>58</td>
<td>74</td>
<td>62.4</td>
</tr>
<tr>
<td>Sim 100</td>
<td>50</td>
<td>74</td>
<td>64</td>
<td>43</td>
<td>78</td>
<td>61.8</td>
</tr>
<tr>
<td>Sim 48</td>
<td>40</td>
<td>77</td>
<td>71</td>
<td>79</td>
<td>40</td>
<td>61.4</td>
</tr>
<tr>
<td>Sim 8</td>
<td>76</td>
<td>31</td>
<td>80</td>
<td>70</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lidar topography & Bathymetry

Lidar combined with other information layers enhances our ability to

Understand, Detect and Predict

influences on wildlife habitat and ecological processes at appropriate scales for species and landscape.
New modeling iterations include:

• Compilation and assessments of new data,
• Fire history as a spatial variable,
• Transition from deterministic modeling to increasingly empirical-based probabilistic approaches,
• Response variables and temporal scales appropriate for near real-time modeling applications.