Mapping Vegetation Properties and Flow Patterns in STAs using Wave Tests

Wasantha Lal, Zaki Moustafa, Walter Wilcox

South Florida Water Management District
Why is the study of vegetation resistance important?

- Timing and attenuation of flood peaks in hydrologic systems and models depends on vegetation resistance.
- Operation of STAs require a knowledge of hydraulic transients in vegetated wetlands.
- Designing efficient treatment wetlands is primarily a hydraulic problem because of the influence of turbulence, dead flow zones, mixing and retention.
Challenges

- There is no vegetation measurements available (diameter, spacing, density, biomass)
- Access is challenging.
- Measurements of depth, slope, and flow velocity, etc. are not easy
Progress in establishing the “Science”

- ASCE J. Hydraul.
- AGU/WRR Pub.
- Workshop by Prof Heidi Nepf, MIT
- Contacts with Kadlec, R. H.
- 3-4 presentations at conferences
Recent Developments
Understanding of the Mechanics has changed

Figure 7.2: Vertical velocity profiles in open channels and vegetated wetlands
Parameterization is improving

The commonly used equation for depth-averaged force balance is

\[g s_f = \frac{1}{2} c_D a U^2 + \frac{\tau_0}{\rho H} \]

where

\[a = \frac{\text{frontal area}}{\text{volume}} \]

and \(a h = \text{frontal area index} \).

a used to define vegetation density
Figure-2. Plan view of the mesh for the vegetation cover (V_{C_d}) of the deep flow region and the vegetation cover (V_{C_s}) of the shallow flow part for the IS configurations.
In the absence of data, we used wave propagation methods, monitored wave velocity and attenuation.
Basic mathematical methods used for the formulation

- Differential calculus - Hilderbrand
- Complex variables -
- Spectral analysis –
- Linear stability theory -
- Perturbation theory – Fluid mechanics, Kundu
- Transport and dispersion of solutes - Fisher
Use of depth averaged flow

2.1. Depth-Averaged Flow Equations
St. Venant’s equations are used to analyze the shallow water waves generated in the wetlands. The St. Venant’s equations consist of a continuity equation and a momentum equation.

\[
\frac{\partial h}{\partial t} + \frac{\partial q}{\partial x} = 0
\]

\[
\frac{\partial q}{\partial t} + \frac{\partial}{\partial x} \left(\frac{q^2}{h} \right) + gh (s_f + \frac{\partial h}{\partial x} - s_0) = 0
\]

where \(h \) = water depth; \(q \) = discharge per unit width; \(g \) = gravitational acceleration; \(s_0 = - \frac{\partial z}{\partial x} \) = bed slope; \(z \) = bottom elevation; \(H = h + z \) = water level; \(s_f \) = friction slope. Figure 1 shows a definition sketch drawn
Energy Slope S_f related to discharge with a smooth function.

$$\Delta q = a \Delta h + K \Delta s_f$$

$$a(h, s_f) = \frac{\partial q(h, s_f)}{\partial h}, \quad \text{and} \quad K(h, s_f) = \frac{\partial q(h, s_f)}{\partial s_f}$$

$a =$ kinematic celerity [Chow, 1956];
$K =$ hydraulic diffusivity, or transmissivity.
Kinematic vs Porous Media Flow

(a) Figure showing a large change in discharge with depth. Change in discharge with slope is small.

(b) Figure showing large change in discharge with slope. Change in discharge with depth is small.

large $a h$
small $K s_f$
large Ψ
small k_1, k_2

Kinematic

Diffusive
For 2-D Wave Propagation in a Shallow Water Medium

Linearization of (3.1) leads to

\[
\frac{\partial h}{\partial t} + a_x \frac{\partial h}{\partial x} + a_y \frac{\partial h}{\partial y} = K_x \frac{\partial^2 h}{\partial x^2} + K_y \frac{\partial^2 h}{\partial y^2} + 2K_{xy} \frac{\partial^2 h}{\partial x \partial y}
\]

(3.5)

where

\[
a_x = \frac{\partial q_x}{\partial h} = \frac{\partial T}{\partial h} s_{fx}
\]

(3.6)

\[
a_y = \frac{\partial q_y}{\partial h} = \frac{\partial T}{\partial h} s_{fy}
\]

(3.7)

\[
K_{xx} = \frac{\partial q_x}{\partial s_{fx}} = \frac{\partial T}{\partial s_{fn}} s_{fx}^2 + T
\]

(3.8)

\[
K_{yy} = \frac{\partial q_y}{\partial s_{fy}} = \frac{\partial T}{\partial s_{fn}} s_{fy}^2 + T
\]

(3.9)

\[
K_{xy} = \frac{\partial q_x}{\partial s_{fy}} = \frac{\partial T}{\partial s_{fn}} s_{fy} s_{fx}
\]

(3.10)
Choose Power law equations – For Easy Mathematics

- Discharge is a function of water depth and slope:

\[q = f(\text{depth}, \text{slope}) = f(d, s) \]

\[q = \frac{1}{n_b} h^{1+\gamma} s^\alpha \]
Three physical parameters to match three physical characterizations of hydraulics

- **\(\gamma \)** - Gamma – gives depth variability
- **\(\alpha \)** - Alpha – gives level of turbulence
- **\(n_b \)** - Manning’s constant characterizes the resistance

\[
q = \frac{1}{n_b} h^{1+\gamma} |s_f|^{\alpha} \text{sgn}(s_f)
\]
Field Test

STA3/4 Cell 2A Wave 1
Discharge 750 cfs,
Period 64 hour
STA3/4 Cell 2A

Waves generated using canal flow

Array of data loggers

Figure 2.1: Location of the data loggers and the IDs.

Figure 2.2: Locations of data loggers and the serial numbers. The loggers 0499, 3962 and 2835 are south of 0508 along levee.
Decay rates and wave numbers, 750 cfs

Fig. 6. Decay coefficients k_1 for STA 3/4 Cell 2A wave test with $Q = 21.2$ m2/s as vectors and contours

Fig. 7. Wave numbers k_2 for STA-3/4 Cell 2A wave test with $Q = 121.2$ m2/s as vectors and contours
Transmissivity

Fig. 9. Contours of transmissivity K in (m2/s) for Cell 2A wave test with $Q = 21.2$ m2/s
Fig. 12. Contours of $1 + \gamma$ for Cell 2A wave test with $Q = 21.2 \text{ m}^2/\text{s}$; values much larger than 1 indicate possible short-circuiting
\[\Psi = \frac{\text{Discharge through the kinematic mechanism}}{\text{Discharge through the diffusion mechanism}} \]

\[\Psi = \frac{a(h)h}{K(h)s_f} \]

Fig. 14. Contours of \(\Psi \) for Cell 2A wave test with \(Q = 21.2 \text{ m}^2/\text{s} \)
Function $q(h,s_f)$ on log-log axes

Figure 7. Contours of average discharge per unit width q (m2/s) obtained using power law equations. The plots are made on log-log axes.
K, transmissivity regimes

- $K < 20 \text{ m}^2/\text{s}$ – dense cattail – excellent
- $20 < K < 60 \text{ m}^2/\text{s}$ – cattail with open spaces
- $60 < K \text{ m}^2/\text{s}$ – watch for short circuiting ($k > 100 \text{ m}/\text{y}$)
- $1000 < K$ – shallow overland flow
- $4000 < K$ – deep hole
- $0.001-0.01 \text{ m/s}$ hyd cond - sand
Velocity nonuniformity \((1 + \gamma)\)

- \((1 + \gamma) = 1\) uniformly distributed over depth
- Between 1 and 3 - normal
- Over 3 – Velocity non-uniformity
- 1.67 – Overland flow
Summary

- Maps for wave decay, wave speed, and resistance.
- In-situ bulk resistance functions, were graphical plots of $q(slope, depth)$, and power-law equations.
- Dimensionless numbers to detect kinematic and diffusive flow conditions or laminar/turbulent conditions in STAs.