Energy partitioning and sensitivity to low temperature events of Everglades wetlands

Sparkle L. Malone, Jordan Barr, Jose D. Fuentes, Steven F. Oberbauer, Christina L. Staudhammer, Evelyn E. Gaiser, Gregory Starr

Presenter: Junbin Zhao
Florida International University
Wetlands Have a Great Potential for Carbon Sequestration

- Slow decomposition and C accumulates over long time periods
- Representing just 5-8% land cover, wetlands contain ~68% soil C
- The stability of this large C pool is uncertain due to human influence and climate change
Subtropical Wetland Ecosystem

- **Average Maximum Daily**
- **Average Minimum Daily**

1380 mm yr$^{-1}$
Hydrology is the most important factor for wetland structure and function, including energy partitioning.

\[R_n = H + LE + G_w + G_{w+S} \]

- **R\(_n\)**: Net Radiation
- **H**: Sensible Heat
- **LE**: Latent Energy
- **G\(_w\)**: Energy stored in water
- **G\(_s\)**: Energy Stored in the soil column

Water Cycle

Wet Season

Dry Season
Marl Taylor Slough
- Short-hydroperiod marsh
- Flooded 4 to 6 months
- Shallow marl soils

Shark River Slough
- Long-hydroperiod marsh
- Flooded ~12 months
- Peat soils

Freshwater Marsh
Bowen Ratio (β): sensible heat / latent heat

- β seasonality increases with variation in hydroperiod.
- The β was higher during the dry season when the amount of energy partitioned to the H flux increased.
Historical frequency (days) of low-temperature events (< 5 °C) in Everglades National Park (1950–2012).

<table>
<thead>
<tr>
<th>Station</th>
<th>Event frequency</th>
<th>Mean annual frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Everglades (EVG)</td>
<td>476</td>
<td>7.8</td>
</tr>
<tr>
<td>Royal Palms Ranger Station (RPR)</td>
<td>404</td>
<td>8.4</td>
</tr>
<tr>
<td>Flamingo (FLG)</td>
<td>333</td>
<td>5.5</td>
</tr>
<tr>
<td>Tavernier (TAV)</td>
<td>37</td>
<td>1.8</td>
</tr>
<tr>
<td>Average</td>
<td>313</td>
<td>5.9</td>
</tr>
</tbody>
</table>
Average temperature during the low temperature days in 2010
Mangroves

Short-hydroperiod

Long-hydroperiod

National Climatic Data Center (NCDC) long-term weather data sets (1950-2012)
Short-Hydroperiod Freshwater Marsh

Long-Hydroperiod Freshwater Marsh

Mangrove Forest

NEE (g CO₂ m⁻² yr⁻¹)
Sensitivity

- A reduction in CO$_2$ exchange rates
Different sensitivities of CO$_2$ fluxes to low-temperature events

Short- and long-hydroperiod marsh

Mangroves

NEE
Conclusion

• Seasonal hydrological pattern controls ecosystem energy partitioning and further determines the frequency and intensity of low-temperature

• Where low-temperature events are less frequent (mangrove), there is an increase in NEE (greater CO$_2$ loss).
More frequent extreme events
Ecosystem carbon balance