Flow impacts on P and OM Cycling in the Ridge and Slough: Lessons from landscape budgets in the Decomp Physical Model and Shark Slough, ENP

Colin Saunders
South Florida Water Management District
Greater Everglades Ecosystem Restoration
Coral Springs, FL. April, 2017
Outline

1. Introduction and DPM findings
2. Objectives
3. Approach: Phosphorus Mass Balance
4. Results
5. Summary and Next Steps
Restoring Connectivity to the Everglades Landscape

Central WCA-3A

Flow direction

South

North

Modified from McVoy et al. 2011
Restoring Connectivity to the Everglades Landscape

What is the Decomp Physical Model (DPM)?

- **Uncertainty 1**: Do high velocities (>2 cm/s) generate sediment movement needed to restore the ridge and slough topography?

- **Uncertainty 2**: To what extent does sheetflow alter P and OM cycling and ultimately foodwebs?
Flows did not follow the ecologically preferred (north-south) pattern

- Velocities ranged from 0.5 - 10 cm s\(^{-1}\)
- High flows (2-5 cm s\(^{-1}\)) were limited to ~500-m
Tracking particle movement: slough to ridge

Velocity
2-5 cm s\(^{-1}\)

Velocity
1-2 cm s\(^{-1}\)
Flow alters slough structure

Mechanisms by which flow alters landscape

- Periphyton/Utricularia collapses/slough clearing (periphyton disappears)
- Velocities increase with sustained flow
- Floc disappears
Other flow observations

- **Velocity, sediment transport increase with flow duration**
 - Sediment traps, Flowtracker ADVs (C. Saunders)

- **Aquatic primary production & respiration reduced**
 - Metabolism studies (Tate-Boldt et al., GEER)

- **Floc more erodible, more labile(?) with flow**
 - Benthic flume (S. Newman, M. Manna)
 - Molecular biomarkers (R. Jaffe’, P. Regier)
 - Algal taxonomy (B. Rosen)
2. Objectives for DPM data synthesis: Phosphorus mass balance model

- Which flow-mediated mechanisms are needed to explain observed changes in ecosystem P stocks (mainly water TP and floc P)?

- Using a “linked” mass balance, to what extent does flow impact P cycling beyond 500-m? How fast do changes migrate downstream?
3. Approach – P budgets of Landscape “Ribbons”

Noe & Childers (2007) summarized P stocks, fluxes for ridge & slough habitats, Everglades-wide

FCE LTER data to generate ridge, slough budgets for conceptual landscape “ribbons” in ENP: near-canal, interior, coastal ecotone

Highlights most important fluxes, discrepancies among data, data gaps, & uncertainties
3. Approach – P budgets of Landscape “Ribbons”

Periphyton P Uptake (gP m\(^{-2}\) yr\(^{-1}\))

** Uptake\(_{\text{max}}\)

* \(K_{TP}\)

Water TP (ug L\(^{-1}\))

Phosphorus budget: SRS-2 slough

Noe & Childers (2007) summarized P stocks, fluxes for ridge & slough habitats, Everglades-wide

FCE LTER data to generate ridge, slough budgets for conceptual landscape “ribbons” in ENP: near-canal, interior, coastal ecotone

Highlights most important fluxes, discrepancies among data, data gaps, & uncertainties

Dynamic budget models in STELLA to compare observed & predicted time series of P stocks & fluxes

** Noe et al., 2002 & FCE LTER data
* Hwang et al., 1998
Application to DPM landscape

- Slough habitats in three 500-m landscape ribbons
 - High-, Medium-, Low-Flow
- Simulation period 2012–2016
 - 2 Baseline Years
 - 3 Flow Events
- Drivers:
 - Daily water depth & velocity
 - Upstream TP (S152 inflow TP)
- Observed vs predicted time series
 - Periphyton P (g P m\(^{-2}\))
 - Floc P (g P m\(^{-2}\))
 - Water TP, TPP (ug/L)
 - Sediment transport (g cm\(^{-2}\) FA d\(^{-1}\))
Application to the DPM study

High Flow Slough

High Flow 2-5 cm/s

Water

atmos. dep

inflow

outflow

floc

peri

soil

cons

deadAG

roots

liveAG

Control

S-152, L-67A, L-67C
Application – High Flow Conditions
Flow-mediated Mechanisms

- Peri/SAV sinking
Flow-mediated Mechanisms

- Peri/SAV sinking
- Peri/SAV stays low (-uptake, +turnover)
Application – High Flow Conditions

Flow-mediated Mechanisms

- Peri/SAV sinking
- Peri/SAV stays low (-uptake, +turnover)
- Floc more erodible (+turnover)
Application – High Flow Conditions

Flow-mediated Mechanisms

- Peri/SAV sinking
- Peri/SAV stays low (-uptake, +turnover)
- Floc more erodible (+turnover)
- Partic-P into ridge
Flow-mediated Mechanisms

- Peri/SAV sinking
- Peri/SAV stays low (-uptake, +turnover)
- Floc more erodible (+turnover)
- Partic-P into ridge
- Partic-P settling reduced
4. Results – Baseline (no-flow)

Depth & Peri-P

Floc-P

Water TP & TPP

Sediment Transport

Model

Obs (RS1)

Model

Obs (C1)
4. Results – All Flow Mechanisms (what we expected to see)

- Depth & Peri-P
- Floc-P
- Water TP & TPP
- Sediment Transport

Model
- Obs (RS1)

Flow event

- Depth (cm) or P stocks (g m\(^{-2}\))
- P stocks (g m\(^{-2}\))

Water TP & TPP

Sediment Transport
4. Results – All Flow Mechanisms

- **Depth & Peri-P**
 - Flow event

- **Floc-P**
 - Model
 - Obs (RS1)
 - Obs (C1)

- **Water TP & TPP**
 - Model TP
 - Model TPP

- **Sediment Transport**
4. Results – “Fitted” Model

Depth & Peri-P

Floc-P

Model
Obs (RS1)
Flow event

Water TP & TPP

Sediment Transport

Model
Obs (RS1)
Obs (C1)
4. Results – What mechanisms are needed to fit to the data?

Flow-mediated Mechanisms

- Peri/SAV collapses
- Peri/SAV reduced
- Floc more erodible, potentially more labile
- Partic-P into ridge
- Partic-P settling reduced
- **Partic-P capture (veg)**

Post-flow: uptake, turnover remain high

++uptake, ++turnover

Capture

Dissolv-P → Partic-P → Capture

Peri/SAV → Cons → Atmos. dep

Soil → Roots → DeadAG → LiveAG

Flow arrows indicate direction of movement.
Objective 2 – Linked P Budgets

High Flow Slough

Moderate Flow Slough

Dissolv-P
Partic-P
Peri/SAV
Capture

atmos. dep

Water

soil

cons

deadAG

roots

liveAG

Ultra Flow
2-5 cm/s

Medium Flow
1-2 cm/s

Low-Flow
<1 cm/s
Summary and Next Steps

- Mass balance provides a “common currency” to integrate physical and biological responses to flow
- Although flow “clears out” sloughs, floc-P stocks doubled
- **Preliminary** model suggests 2-20x increase in periphyton uptake and turnover (including post-flow)
- **contrary** to aquatic metabolism modeling (Tate-Boldt et al.) and periphyton incubations (Newman et al.)
- **consistent** with increases in periphyton TP on periphytometers, including post-flow effects (Newman et al.)
- synthesis with other DPM data still in progress…
4. Results – Baseline (no-flow)

- Depth & Peri-P
- Floc-P
- Water TP & TPP
- Sediment Transport

Model TP vs. Obs (RS1) vs. Obs (C1)
“Linked” Moderate Flow – Floc P

Linked Baseline-Flow

Linked High-Flow

P stocks (g m⁻²)

Model
Obs (RS1)