Nutrient Storages in the Everglades Stormwater Treatment Areas

18th April

GEER 2017

Rupesh Bhomia, Todd Osborne, Odi Villapando and K. R. Reddy

Soil and Water Sciences Dept., University of Florida, Gainesville, FL
South Florida Water Management District, West Palm Beach, FL
RATIONAL

Understand wetland biogeochemical processes that regulate phosphorus (P) removal efficiency and dictate long-term stabilization of P in Everglades STAs

Key Question
• Can internal loading of P to the water column be reduced or controlled, especially in the lower reaches of the treatment trains?

Objectives
• Determine existing nutrient (P) storages in STA soils
• Compare the differences in soil nutrient storages between emergent and submerged vegetation
Emergent Aquatic Vegetation (EAV)

U = Uptake
T = Transfer
D = Decomposition and leaching
A = Accretion
Pr = Precipitation

Submerged Aquatic Vegetation (SAV)

*RAS = Recently Accreted Soil
Two treatment flow ways (cells) in STA-2

- **Cell 1 (EAV)** → Treatment area = 744 ha
- **Cell 3 (SAV)** → Treatment area = 930 ha
SAMPLING AND ANALYSIS

- Floc – comprised of unconsolidated material
- RAS – determined based on color and texture
- Pre-STA – layer representing antecedent soils (before STAs began operations)
- Bulk density (BD) and nutrient (P, C & N) concentrations
- Nutrient storages were calculated for each layer

\[
\text{Soil nutrient storage} \left(\frac{g}{m^2} \right) = \frac{\text{Nutrient conc.} \left(\frac{mg}{Kg} \right) \times \text{BD} \left(\frac{g}{cc} \right) \times \text{depth (cm)}}{100}
\]

RAS = Recently Accreted Soil
SPATIAL TRENDS – Bulk Density

Higher bulk density in SAV than EAV cells, in all soil sections
SPATIAL TRENDS – Phosphorus in Floc

TP (mg kg$^{-1}$) P mass storage (g m$^{-2}$)

Avg. depth (cm) – EAV- 7.7 and SAV- 10.7
SPATIAL TRENDS – Phosphorus in RAS

Cell 3
SAV

Cell 1
EAV

Cell 3
SAV

Cell 1
EAV

TP (mg kg\(^{-1}\))

P mass storage (g m\(^{-2}\))

Avg. depth (cm) – EAV- 2.5 and SAV- 3.0
SPATIAL TRENDS – Phosphorus in pre-STA soils

Cell 3
SAV

Cell 1
EAV

Cell 3
SAV

Cell 1
EAV

TP (mg kg\(^{-1}\))

Pre STA

TP (mg kg\(^{-1}\))

0 - 250
251 - 500
501 - 750
751 - 1000
1001 - 1500
1501 - 3000

P mass storage (g m\(^{-2}\))

(g m\(^{-2}\))

< 2
2 - 3
3 - 4
4 - 5
> 5

Avg. depth (cm) – EAV- 19.1 and SAV- 16.4
SOIL NUTRIENT STORAGES

<table>
<thead>
<tr>
<th>STA-2</th>
<th>Type</th>
<th>Depth</th>
<th>P</th>
<th>N</th>
<th>C</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAV</td>
<td>Floc</td>
<td>7.7 ± 0.4</td>
<td>2 ± 0.1</td>
<td>38 ± 2</td>
<td>487 ± 28</td>
<td>13 ± 1</td>
</tr>
<tr>
<td>RAS</td>
<td>2.5 ± 0.2</td>
<td>1.7 ± 0.2</td>
<td>47 ± 3</td>
<td>680 ± 50</td>
<td>20 ± 2</td>
<td></td>
</tr>
<tr>
<td>Pre-STA</td>
<td>19.1 ± 0.3</td>
<td>6.1 ± 0.3</td>
<td>787 ± 28</td>
<td>12641 ± 433</td>
<td>225 ± 10</td>
<td></td>
</tr>
<tr>
<td>Cell-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAV</td>
<td>Floc</td>
<td>10.7 ± 0.5</td>
<td>8.5 ± 0.8</td>
<td>124 ± 9</td>
<td>2313 ± 161</td>
<td>44 ± 3.6</td>
</tr>
<tr>
<td>RAS</td>
<td>3 ± 0.2</td>
<td>3.3 ± 0.3</td>
<td>78 ± 8</td>
<td>1452 ± 134</td>
<td>30 ± 3</td>
<td></td>
</tr>
<tr>
<td>Pre-STA</td>
<td>16.4 ± 0.7</td>
<td>17.5 ± 2</td>
<td>1128 ± 42</td>
<td>18098 ± 735</td>
<td>278 ± 14</td>
<td></td>
</tr>
</tbody>
</table>

Phosphorus storage in vegetation biomass

- EAV ~ 3 - 4 g P m\(^{-2}\)
- SAV ~ 0.5 – 1.5 g m\(^{-2}\)
VEGETATION INDUCED DIFFERENCES

Floc

- Floc-EAV
- Floc-SAV

RAS

- RAS-EAV
- RAS-SAV

Pre-STA

- Pre-STA-EAV
- Pre-STA-SAV

Images of EAV and SAV Floc samples.
DIFFERENCES – Phosphorus forms

Floc

\[y = 0.19x + 9.49 \]

\[R^2 = 0.83 \]

\[y = 0.73x - 153.98 \]

\[R^2 = 0.97 \]

RAS

\[y = 0.19x + 9.49 \]

\[R^2 = 0.83 \]
VEGETATION DIFFERENCES—Phosphorus forms

Organic P

\[y = 0.81x - 9.49 \]
\[R^2 = 0.99 \]

Sampling transect

Cell 1 EAV

Cell 3 SAV

RAS

Floc
SUMMARY

• Significant P enrichment in floc near inflows with concentrations diminishing towards outflows

• Floc P enrichment in EAV (Cell 1) was greater & spatially extensive compared to SAV (Cell 3)

• Nutrient (P, C, N, S) storages were typically higher in SAV (Cell 3) in comparison to EAV (Cell 1)

• SAV floc had higher percentage of TP as inorganic P (up to 55%) in comparison to EAV floc (20%)

• EAV floc had higher percentage of TP as organic P (up to 80%) in comparison to SAV floc (30-35%)
THANK YOU!!!

This study is funded by a research grant from the South Florida Water Management District (SFWMD). The SFWMD Lab and the Wetland Biogeochemistry Lab, UF are acknowledged for their analytical services.