The Influence of Altered Flow Regimes on Aquatic Ecosystem Metabolism in an Everglades Marsh

E. Tate-Boldt¹, C. Hansen¹,², C. J. Saunders¹, S. Newman¹, F. Sklar¹

¹South Florida Water Management District, West Palm Beach, FL, USA

²Florida International Univ., Miami, FL, USA
The Influence of Altered Flow Regimes on Aquatic Ecosystem Metabolism in an Everglades Marsh

I. Decompartmentalization Physical Model (DPM)
II. Aquatic ecosystem metabolism
III. Flow effects on aquatic metabolism
Ten 6-ft diameter gated culverts (S-152)
De compartmentalization Physical Model

South Flow-way

East Transect

RS1S (3.6 cm/s)

E250 (7.1 cm/s)
E400 (4.1 cm/s)
E500 (1.9 cm/s)
E800 (1.4 cm/s)

C1S (0.9 cm/s)
Hypothesis: Sites with high flow conditions will have increased productivity and respiration as compared to low flow sites.
- NAP = \(\Delta O_2/\Delta t - F \)
- GR = \(\Delta O_2/\Delta t \) at night
- GPP = NAP + GR

Staehr et al. 2010
<table>
<thead>
<tr>
<th></th>
<th>RS1S (cm/s)</th>
<th>C1S (cm/s)</th>
<th>RS2S (cm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean DO</td>
<td>3.55</td>
<td>4.72</td>
<td>7.73</td>
</tr>
<tr>
<td>Max. DO</td>
<td>4.52</td>
<td>6.84</td>
<td>6.97</td>
</tr>
<tr>
<td>Min. DO</td>
<td>2.97</td>
<td>2.83</td>
<td>2.85</td>
</tr>
</tbody>
</table>
South Florida Water Management District

East Transect

- **E250 (7.1 cm/s)**
- **E400 (4.1 cm/s)**
- **E500 (1.9 cm/s)**
- **E800 (1.4 cm/s)**

Graphs:

- **DO (g m⁻³)**
 - E250
 - E400
 - E500
 - E800

Time (d):

- 12/13/16, 12/14/16, 12/15/16, 12/16/16
- 2/14/17, 2/15/17, 2/16/17, 2/17/17

[Graph showing DO levels at different points along the transect over time.]
East Transect

Flow
12/2016

Post-flow
2/2017

GPP
(g O\textsubscript{2} m-3 d-1)

GR
(g O\textsubscript{2} m-3 d-1)

RSq = 0.96
P-Value <0.001

RSq = 0.93
P-Value <0.0001

RSq = 0.92
P-Value <0.0001

RSq = 0.75
P-Value = 0.0087

RSq = 0.93
P-Value <0.0001

E250 E400 E500 E800

E250 E400 E500 E800

A A B C

A B C A

A AB B A

A AB B A
Summary

• Productivity was net heterotrophic
 • (McCormick et al 1997, Hagerthy et al. 2010)
• GPP and GR decreased in response to flow
 • This may be do to “slough clearing”...
 • Loss and transport of periphyton community
 • Bed sediment scouring
 • Higher flows reduced DO diurnal variation
 • Result of increased water column mixing
• GPP and GR increased the further a site was from the S152 structure
• Post-flow GPP and GR at low and high flow sites did not differ
Acknowledgements

• Claus Hansen, Garren Mezza, Michelle Blaha, Fabiola Santamaria, Christa Zweig, and Michael Manna
• USACE, USGS, ENP, USFWS, FDEP, SFWMD
• Univ. Hawaii, Florida International University, ...
Next Steps

• Researching flow paradigms in the Everglades
• Lateral flow inputs
• Slough’s porous boundaries
• Reduction in DO diel variation