WHY THE PRIMARY PRODUCERS (ALGAE AND CYANOBACTERIA) ARE THE KEY EARLY RESPONDERS TO NUTRIENT AND WATER FLOW CHANGES IN THE EVERGLADES

Barry H. Rosen, Sue Newman, Joel Trexler, Sarah Bornhoeft, Eric Tate-Bolt, Colin Saunders and Carlos Coronado-Molina

U.S. Geological Survey
South Florida Water Management District
Florida International University
The Decomp Physical Model (DPM)
Samples of periphyton collected throughout the pocket: sediment traps, artificial substrates and natural collections.

Enlarged view of the DECOMP Physical Model footprint indicating the locations of the walkways and monitoring stations. C = control; RS = ridge/slough, S = slough, UB = upstream backfill.
DPM culverts: first opening day Nov. 5, 2013
One response: any member of the community may be stimulated
Daily, weekly, monthly, seasonal forcing functions (temp., light quantity and quality, rainfall)
Each organism has an optimum rate of nutrient uptake; and optima for all other factors
Each organism has a concentration threshold efficiency to take up that nutrient
Add flow increase... (these are periphyton, so they stay in place for the most part)

Some cells simply increase in size

- quiescent (subsistent) species stimulated
- rare species stimulated; more common species become rare
Add flow increase... potential dramatic shift (these are periphyton, so they stay in place, for the most part)

H_o: There is a dramatic shift in the periphyton community structure

Findings: nearest to inflow site, a big increase in filamentous greens
Community response: E-250 greens
Community response: across distance and time

1st responders easy to document: the community
Community response: across distance and time
Diatoms response

H₀: There is a more subtle shift in the periphyton community structure

Findings: a) more of an individual species and, b) more species overall
Community response: cyanobacteria

E-250

E-250

E-400, E-500 and E-800
Second Response: cellular level, (what does flow do)?

Before:
- Nutrients are pulled from the surroundings.
- Diffusion across the boundary layer.
- Enzymatic flexibility of the organism (to some extent).

Boundary layer

Eroded boundary layer

After:
- More nutrients enter the cells: growth.
- Enzymatic response to nutrient availability.
- Certain species stimulated by the “new” nutrient regime.

Nutrient gradient
Life at ultra low nutrients: greens
Add flow, quiescent filamentous greens proliferate *Mougeotia*
Add flow, quiescent filamentous greens proliferate *Spirogyra*
Collection device for horizontal transport

- **Design**: Phillips et al., 2000
 - 10.16 mm dia. x 1-m acrylic tube
 - inlet/outlet diam. 4-mm, 7-mm or 10-mm
 - Set @ mid-water column, above floc layer

- **Post-processing**
 - Siphon off water; sieved 1-mm
 - Mass loading rate
 - Per ground area (g m\(^{-2}\) d\(^{-1}\))
 - Or per frontal area (g cm\(^{-2}\) d\(^{-1}\))
 - CNP, LOI, molecular biomarkers

- **Sampling frequency & design**
 - 3-6 week deployment intervals
 - 2-4 traps deployed along a ridge-slough transect
 - oriented parallel to dominant flow vector

Keeping records: Species richness from live samples and cleaned diatoms

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0. µm</td>
<td></td>
</tr>
<tr>
<td>1.0. µm</td>
<td></td>
</tr>
</tbody>
</table>

Mougeotia sp.

Fragilaria synegrotesca

Mastogloea sp.

Phacus sp.

Gomphospheria 16%

Geminocystis (Synechocystis) 2%

Keeping records: Species richness from live samples and cleaned diatoms

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0. µm</td>
<td></td>
</tr>
<tr>
<td>1.0. µm</td>
<td></td>
</tr>
</tbody>
</table>

Keeping records: Species richness from live samples and cleaned diatoms

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0. µm</td>
<td></td>
</tr>
<tr>
<td>1.0. µm</td>
<td></td>
</tr>
</tbody>
</table>
Species Richness: Greens as a proportion of total species richness

\[y = 0.0032x^2 + 0.2094x - 0.1337 \]

\[R^2 = 0.9379 \]
Species Richness: Diatoms as a proportion of total species richness

\[y = -0.0004x^2 + 0.3579x + 1.4047 \]

\[R^2 = 0.888 \]
Species Richness: Cyanobacteria as a proportion of total species richness

\[y = -0.0017x^2 + 0.3201x - 0.8781 \]

\[R^2 = 0.897 \]
Other interesting indicators: plankton

E-800 10-17-16
Other interesting finds: freshwater red alga, *Nemalion*
Ecological Strategies: complimentary pigments
Thank You!