Evaluation of regional hydroclimate variability and links to the hydrology and saltwater intrusion in South Florida

Anteneh Abiy Wossenu Abtew Assefa Melesse

Friday, April 28, 2017

Topics of Study

Drought Phase and Variabilities in Miami Area

Implications to future freshwater availability and saltwater intrusion

Outline

- Introduction
- Gap
- Objective
- Methodology
- Result and Discussion
- Conclusion and Recommendation

The Atmosphere Hydrosphere Continuum

In South Florida, the dry season rainfall is highly associated with ENSO oscillations (Abtew et al., 2010)

- El-Nino Presents wetness
- La-Nina presents drought

Drought

- **Meteorological**: dry weather patterns
- Agricultural: Soil moisture deficit,
- Hydrological: Rainfall deficit below normal
- Managerial: dryness due to water operations

Drought in South Florida

Groundwater Response to rainfall Biscayne Aquifer

Groundwater level (Well F-291) and rainfall (S26)

Hydrological Drought

- Groundwater recharge decrease
- Surface water availability decrease
- Groundwater demand increase
 - ➢ Fresh groundwater head decline
 - Hydraulic gradient decrease, even changes its direction
 - Saltwater intrusion?
- Freshwater availability decreases

Problem

The effect of drought on water resources availability and saltwater intrusion is not clearly established

The objectives are to:

• Evaluate hydrological drought in Miami area

• Develop implications to current and future water availability

Rainfall Data

• Miami Dade county long-term (110 years),

1906 to 2016, Monthly, From Florida climate center

Approach

- Time domain
 - Standardized Precipitation Index (SPI-x)

Frequency domain

Fourier transform

SPI-x

- Widely used for hydrological drought evaluation
- Measures drought at differed time window
- Allows to evaluate the cumulative effect

6-month SPI through the end of February 2009

Copyright © 2011 National Drought Mitigation Center

Standardized Precipitation Index (SPI-x)

Standard Precipitation Index

McKee et al. (1993)

Standardized Precipitation Index (SPI-x)

The dry season rainfall anomaly is strongly linked with ENSO fluctuations

Standardized Precipitation Index (SPI-x)

Drought severity based on SPI 12

Start	End	SPI24	Drought Duration (months)	
1907.38	1908.62	-19.6	16	
1910.71	1911.21	-3.3	7	A 114 10 14 16 10
1911.79	1912.4	-1.8	4	
1912.29	1912.38	-0.3	2	
1913.46	1915.38	-20.8	24	2010
1915.88	1919.29	-39.0	42	
1920.12	1922.62	-30.5	31	
1923.79	1924.71	-14.0	12	Illia his. has
1927.38	1929.12	-27.2	22	
1931.46	1932.46	-12.0	13	
1933.46	1934.29	-3.9	10	
1934.79	1936.12	-14.6	17	3 2010
1937.46	1946.29	-37.8	107	
1950.21	1953.38	-38.6	39	
1955.29	1957.46	-36.3	27	a little sets and the
1961.71	1964.54	-46.9	35	A CONTRACTOR
1970.54	1972.21	-21.7	21	
1973.38	1977.29	-35.3	48	ma anna an 111 an 1125
1978.46	1979.62	-11.7	15) 2010
1980.29	1982.21	-7.5	24	
1983.88	1984.29	-3.4	6	
1985.21	1985.96	-4.6	10	and the same of the
1987.21	1988.46	-11.3	16	
1988.71	1991.71	-33.2	37	
1992.79	1992.96	-1.5	3	
1996.88	1997.12	-0.2	4) 2010
2000.46	2000.88	-1.1	4	
2004.88	2005.38	-2.2	7	
2009.12	2010.12	-5.6	13	
2015.46	2015.88	-4.7	6	

Discussions

- There is a systematic fluctuation of SPI index values with time,
- SPI 3 and 6 indicate seasonal fluctuations
- The SPI12 and SPI24 indicates:
 - Long-term fluctuations
 - A longer wet phase of the fluctuation

Miami droughts in frequency domain

Conclusion

- SPI24 indicates that we are in the wet phase of the fluctuation
- The drought severity is a function of rainfall deficit and duration
- The central drought has a ten-year cycle
- Overall, the Biscayne aquifer is sensitive to rainfall
- Prolonged drought could result in saltwater intrusion
- Hence, recharge deficit management due to drought should be considered to enhance the sustainability of freshwater availability in the area.

Thank you