Finding NiMo: eDNA detection of Nile monitors (*Varanus Niloticus*)

Kelly Williams, Antoinette Piaggio, Doreen Griffin, John Humphrey, and Mike Avery USDA National Wildlife Research Center Wildlife Genetics Lab and Florida Field Station

National Wildlife Research Center

Fort Collins, Colorado

Nile Monitors: a destructive invasive species

- Opportunistic habitat and diet
 - Invertebrates, burrowing owls, insects, carrion, fish, young alligators and crocodiles, snakes, turtles...
 - Native egg laying animals such as birds, turtles, and alligators

http://myfwc.com/wildlifehabitats/nonnatives/reptiles/nile-monitor/

A Growing Problem

- 713 observations
- Identify and remove populations
- Trapping
- Elusive

http://www.tampabay.com/news/environment/wildlife/nile-monitor-lizards-invaded-florida-and-theyre-winning-the-battle/1011745

https://www.eddmaps.org/florida/distribution/viewmap.cfm?sub=18353

Environmental DNA

- Need sensitive method of detection
- eDNA: fragments of DNA suspended in water, air, or soil
- Challenge low quality/quantity DNA

Benefits of eDNA detection

- Detect last few individuals after control
- Detect first individuals on invasion front
- Monitor areas thought to be free of Nile monitors
- Confirm reported sightings
- Use in remote areas where other monitoring efforts are costly and time-consuming

Process of eDNA capture and detection

Wildlife Services NWRC National Wildlife Research Center

Primer and qPCR Optimization

- Primers designed to amplify region of DNA specific to Nile monitor
 - BLAST (Basic Local Alignment Search Tool)
 - Tissue derived DNA
 - Tested against tissue of closely related species (i.e. Varanus salvator)

Captive Nile monitors – FL field station

Time Trials

- 2 Nile monitors used (A&B)
- Detection
 - Time zero water sampled
 - Nile monitor placed in water
 - Water collected at 30 mins and 1 hour (3 reps)
 - Monitors removed
- Degradation
 - Water left out for 3 weeks
 - Sampled collected on days 1,3,7,11,14,18, 21 (3 reps)

Lab Results - Detection

United States Department of Agriculture Animal and Plant Health Inspection Service

10 Mondor = 2

Lab Results - Degradation

Niddlife Services NWRC National Wildlife Research Center

Field Test

Future Direction

- Analyze field samples collected along transects
- Develop surveillance sampling/analysis methods to monitor invasion and elimination efforts

Acknowledgements

Dr. Toni Piaggio Dr. Mike Avery John Humphrey

NWRC Genetics Lab: Doreen Griffin Darren Wostenberg Matt Hopken

National Wildlife Research Center: Florida Field Station Wildlife Service Operations NWRC's Director's Office National Wildlife Research Center

Wildlife Services

Questions?

kellwill@rams.colostate.edu Toni.J.Piaggio@aphis.usda.gov

