

Application of the comprehensive aquatic system model (CASM-4D) in support of ecosystem restoration

Steven M. Bartell^{1,2}

¹Cardno, Inc., Greenback, TN ²Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN

> April 17-20, 2017 Coral Springs, Florida

Purpose

- Describe the CASM
- Introduce the SAND model
- Present SAND-CASM integration to address ecosystem restoration

Special Acknowledgments

Craig Fischenich Bobby McComas ERDC, Vicksburg, MS for SAND modeling

Comprehensive Aquatic Systems Model – CASM-4D

Coastal Louisiana example

Modeling aquatic plant populations

Modeling fish and invertebrate populations

Environmental inputs define habitat quality and distribution

Habitat quality effects on populationspecific modeled growth

CASM-4D Outputs

Corper terstie Aquato Systems Hodel (CASH)

Biological/Ecological

Daily values of population biomass (gC/m²) Community diversity System-level N and P assimilation Oxygen produced Carbon sequestration

Environmental Dissolved oxygen DIN, DIP, Si, TIS, POC, DOC

Ecological Risks Population, community, ecosystem effects

SAND V3: Sediment And Nutrient Diversion Model - Planform

Example has 50 spatial zones across the model domain

Sediment accumulation

- Discharge, velocity
- Suspended sediment concentrations
- Particle size
- Roughness

SAND V3: Sediment And Nutrient Diversion Model

Example SAND input river discharge – 25 y

- Daily discharge
- Suspended sediment load
- Nutrient concentration

SAND annual sediment deposition (feet) – selected zones

	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6	Zone 7	Zone 8	Zone 9	Zone 10	Zone 11	Zone 12	Zone 13	Zone 14	Zone 15
Year 1	0.6728	1.0143	0.9810	0.7435	0.6027	0.5103	0.4455	0.3980	0.3621	0.3342	0.3120	0.2938	0.2787	0.2661	0.2553
Year 2	0.5879	0.9237	0.7651	0.5800	0.4705	0.3612	0.3164	0.2839	0.2595	0.2408	0.2259	0.2140	0.2043	0.1961	0.1889
Year 3	0.4583	0.6596	0.5901	0.4051	0.3289	0.2784	0.2439	0.2188	0.2000	0.1853	0.1589	0.1506	0.1435	0.1371	0.1314
Year 4	0.3970	0.5917	0.5935	0.4598	0.3322	0.2815	0.2452	0.2193	0.1995	0.1839	0.1713	0.1612	0.1529	0.1459	0.1400
Year 5	0.5721	0.9673	1.0813	0.8635	0.6983	0.5247	0.4569	0.4068	0.3674	0.3380	0.3147	0.2960	0.2804	0.2673	0.2559
Year 6	0.5838	0.0000	0.0000	1.0997	0.8141	0.6834	0.5933	0.4710	0.4264	0.3914	0.3634	0.3410	0.3210	0.3055	0.2920
Year 7	0.5862	0.0000	0.0000	0.0000	1.0758	0.8876	0.6755	0.5976	0.5391	0.4927	0.4094	0.3833	0.3613	0.3429	0.3274
Year 8	0.0000	0.0000	0.0000	0.0000	0.0000	0.4186	0.3560	0.2799	0.2532	0.2332	0.2172	0.2051	0.1952	0.1871	0.1644
Year 9	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.9285	0.8057	0.6363	0.5805	0.5355	0.5003	0.4710	0.4467	0.4263
Year 10	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.4648	0.4147	0.3821	0.3166	0.2983	0.2830	0.2699
Year 11	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.3537	0.3208	0.2972	0.2798	0.2369	0.2262
Year 12	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.3673	0.3319	0.3119	0.2953	0.2520
Year 13	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.4163	0.3804	0.3582	0.3393
Year 14	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.3775	0.3463	0.3276
Year 15	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.3925	0.3585	0.2567
Year 16	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.1790	0.1632	0.0000
Year 17	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.3826	0.0000	0.0000
Year 18	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Year 19	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Year 20	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Year 21	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Year 22	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

- Depends upon discharge, velocity, particle size, bathymetry, and sediment consolidation
- Value of zero means maximum amount of land-building achieved for the zone

SAND modeled changes in land cover – entire domain

SAND modeled changes in mean zone depth – after 25 y

Daily values:

Risks and benefits of ecosystem restoration

- Discharge
- Suspended sediments
- Nitrogen

Distribution and biomass:

Initial conditions:

- Land cover
- Bathymetry

Use an integrated modeling approach to examine ecological implications of sediment management

SAND-CASM modeled changes in aquatic plants – entire domain

Results reflect

- Population-specific depth preferences
- Population-specific responses to DIN loading
- Overall increase of land-cover, less open water

Year

SAND-CASM modeled changes in benthic invertebrates – entire domain

- Population-specific depth preferences
- Indirect food web effects,
 - e.g., increased periphyton production

Relevance to GEER:

- Managed flows
- Beneficial sediment use
- Temperature
- Salinity
- Nutrients (N, P)
- Combined factors

Governing equations

Aquatic plants

 $dB_i/B_idt = [Pm_i \{h(T), f(I), g(N), hmod\}(I - presp_i)]$ - dresp_i h(T) - (s_i + m_i) - $\sum [h(T) B_i C_{ii} w_{ii} a_{ii} h_{ii} B_i)/(B_i + \sum w_{ii} a_{ii} h_{ii} B_i)]$

Fish and invertebrates

 $dB_i/B_i dt = \sum [(Cm_i \ h(T) \ w_{ij} \ a_i \ h_{ij} \ B_j)/(B_i + \sum w_{ij} \ a_{ij} \ h_{ij} \ B_j) - (u_i + f_i + rsda_i)]$

 $-r_ih(T)-m_i$

- $\sum [(Cm_j h(T) w_{ij} a_{ij} h_{ij} B_j)/(B_j + \sum w_{ij} a_{ij} h_{ij} B_i)]$ - sp_i

- First-order linear differential equations with nonlinear terms
- One instance of the governing equation for each population
- Equations interrelated by trophic interaction terms

Privileged and Confidential

Integration of CASM-4D with physical models

Scale differences between H&H models and CASM routinely requires some spatial and or temporal averaging...

Privileged and Confidential