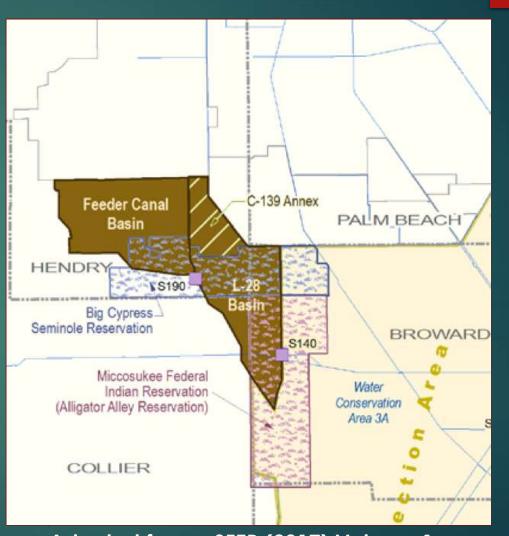


HYDROLOGIC AND WATER QUALITY MODELING FOR EVALUATING BEST MANAGEMENT PRACTICES IMPLEMENTATION IN A WESTERN EVERGLADES WATERSHED

> **Dr. Yogesh Khare** The Everglades Foundation

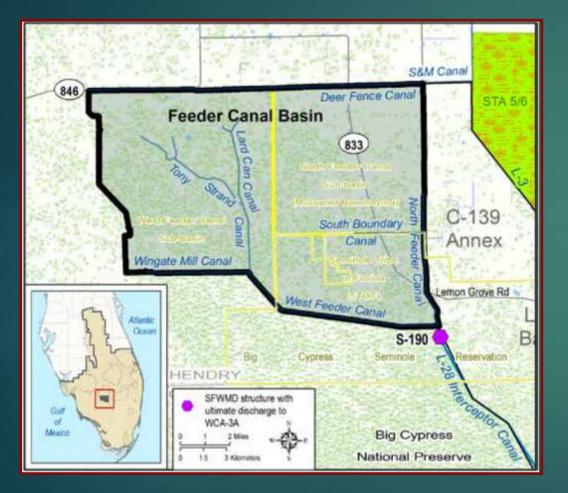

20 April, 2017



# Background

### Feeder Canal (FC) Basin

- Non-ECP Basin
- SE Hendry County
- Predominantly agricultural
- Area: 108 sq. miles
- Drains to WCA3A through L28 Interceptor Canal
- \$190 Gated Spillway




Adopted from - SFER (2017) Volume 1, Chapter 4





# Background



Adopted from - SFER (2017) Volume 1, Chapter 4

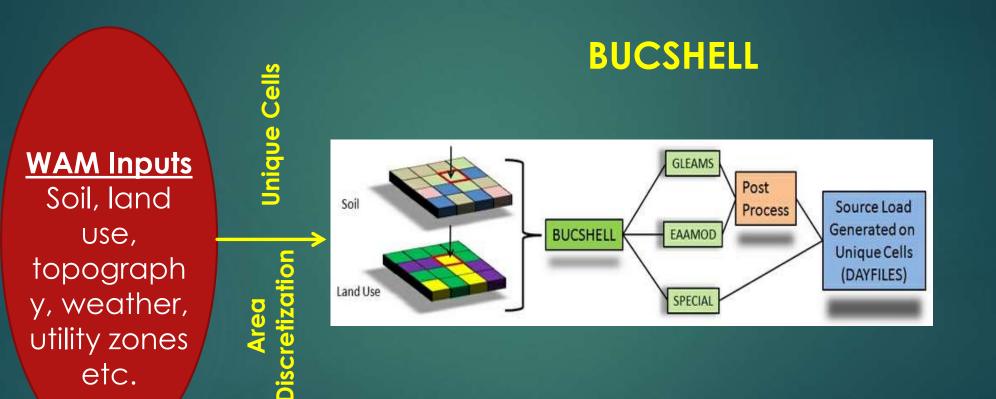
- Top TP Contributor to WCA3A (WY2012-2016)
  - TP FWMC: ~87 ppb
  - TP Load: ~ 6 tons/yr
- FC Basin is part of 'zone 2' of Western Everglades Restoration Project (WERP).
- ~20% of FC is within Big
  Cypress Seminole Reservation



# Objectives

### **Objective 1:**

To model hydrology and water quality for the existing conditions (2000-2014) in FC Basin.

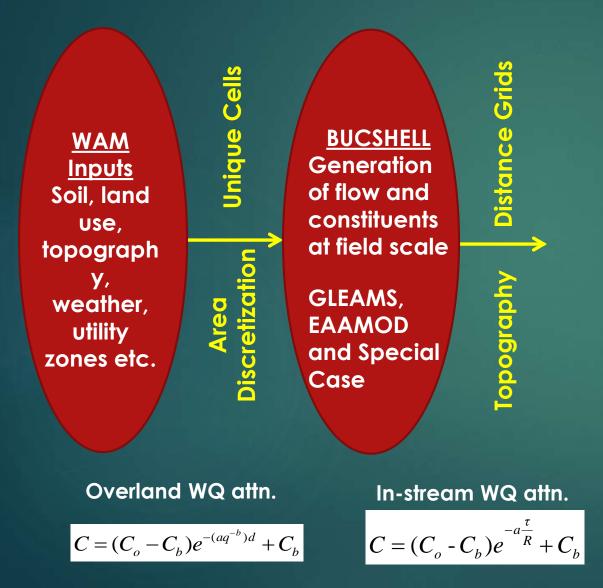

### **Objective 2:**

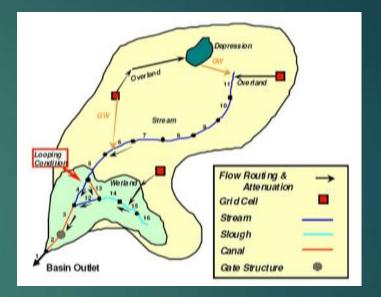
To assess potential of TP load reduction from FC Basin through implementation of Agricultural and Urban Best Management Practices (BMPs).

Tool: Watershed Assessment Model (WAM)



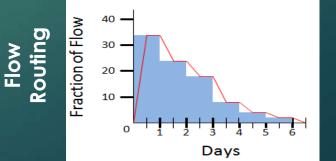
# WAM Details





Adopted from WAM Manual (SWET, 2014)

Protecting and Restoring America's Everglades




# WAM Details



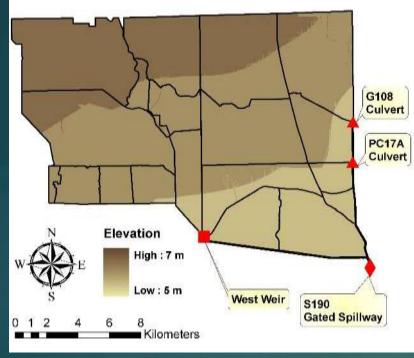


#### **BLASROUTE**

$$T = \left(\frac{d}{v}\right) + k + U - HYDRO$$







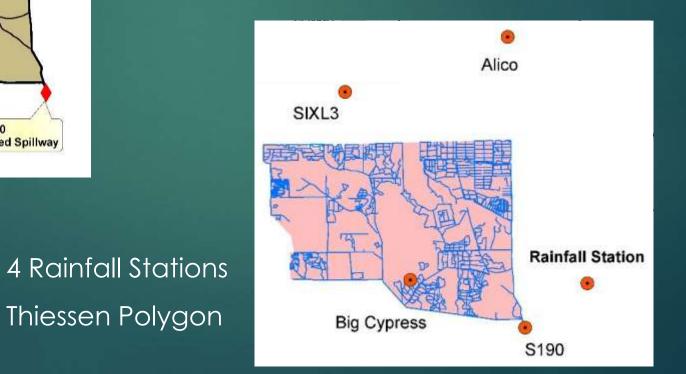



Protecting and Restoring America's Everglades

# FEEDER CANAL BASIN Existing Conditions

# Feeder Canal: Input Maps for WAM



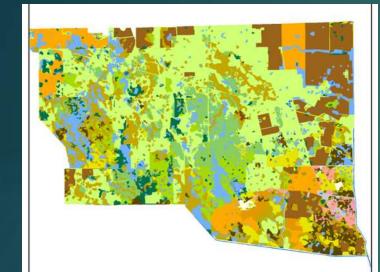

•

•

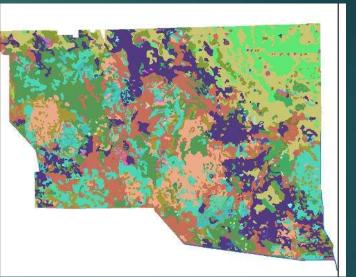
Thiessen Polygon

Elevation Data: FGDL Statewide DEM (2013)

- Flat terrain sloping from NW to SE •
- 20 sub-basins: literature, • topography and imagery




8


Protecting and Restoring America's Everglades

# Feeder Canal: Input Maps for WAM





| LU                | %   |
|-------------------|-----|
| Urban, developed  | 1   |
| Pasture           | 42  |
| Other Agriculture | 19  |
| Natural Areas     | 9   |
| Wetlands          | 29  |
| Total             | 100 |
|                   |     |
|                   |     |

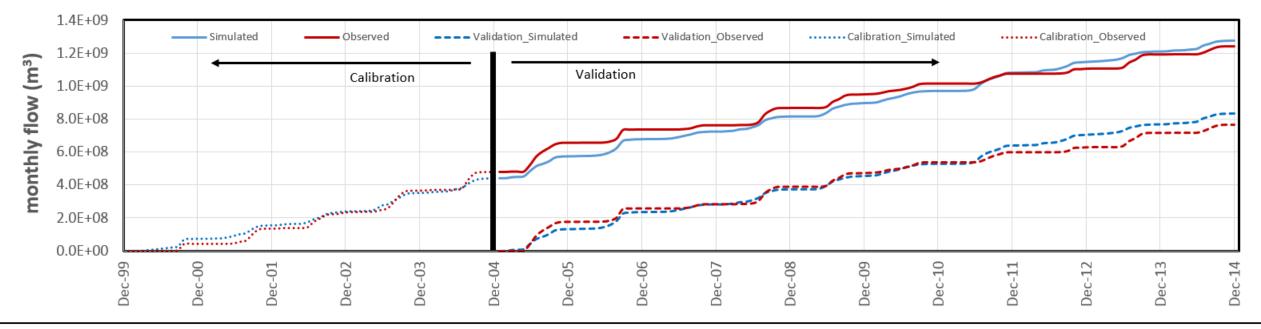




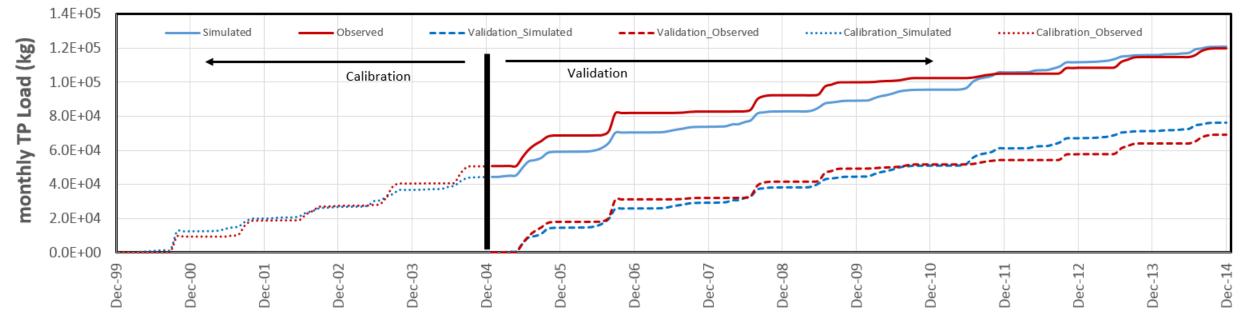
9

| and Use                        | Low Density Residential   |
|--------------------------------|---------------------------|
| <all other="" values=""></all> | Open Water                |
| Barren Land                    | Row Crops                 |
| Citrus Groves                  | Scrub and Brushland       |
| Commercial and Services        | Undeveloped Urban Land    |
| Cypress                        | Unimproved Pasture        |
| Emergent Aquatic Vegetation    | Wet Prairies              |
| Freshwater Marshes             | Wetland Coniferous Forest |
| Hardwood Conifer Mixed         | Wetland Forested Mixed    |
| Hardwoods                      | Wetland Hardwoods         |
| Improved Pasture               | Woodland Pasture          |

LU Data: FDEP Statewide Landuse (2011-12)


| Soil       | Туре   |
|------------|--------|
| Basinger   | EAAMOD |
| Boca       | GLEAMS |
| Chobee     | GLEAMS |
| Hallandale | GLEAMS |
| Holopaw    | EAAMOD |
| Immokalee  | EAAMOD |
| Jupiter    | GLEAMS |
| Riviera    | EAAMOD |

# Model Calibration - Validation


Simulation Period – 2000 to 2014

- Calibration 2000 to 2004 (5 years)
- Validation 2005 to 2014 (10 years)
- Target Variables and Goodness of Fit Measures
  - Monthly flows and monthly TP load @ \$190
  - Nash-Sutcliffe Efficiency and Percentage Bias
- Sequential manual calibration H&H then Nutrient
  - H&H ET factors, manning's n, runoff velocity and unit hydrograph
  - Nutrient background P concentrations and attenuation parameters

#### FEEDER CANAL BASIN CUMULATIVE OUTFLOW AT \$190



#### FEEDER CANAL BASIN CUMULATIVE TP LOAD AT \$190



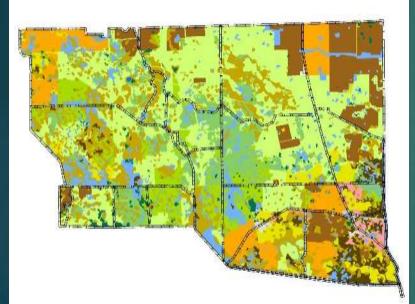
## Summary GOFs for flow and TP at \$190

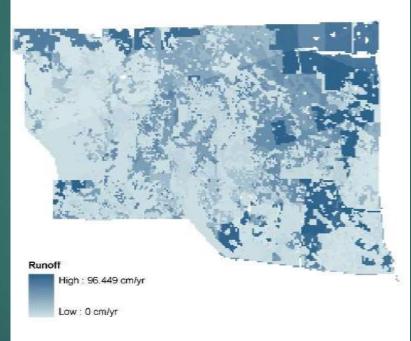
| COL   | Monthly Flow |            | Monthly TP Load |             |            |         |
|-------|--------------|------------|-----------------|-------------|------------|---------|
| GOF   | CALIBRATION  | VALIDATION | OVERALL         | CALIBRATION | VALIDATION | OVERALL |
| NSE   | 0.70         | 0.70       | 0.70            | 0.68        | 0.66       | 0.67    |
| PBIAS | +8.4         | -9.3       | -2.5            | +12.1       | -10.0      | -0.6    |

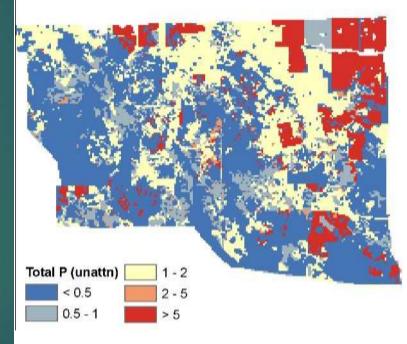
$$NSE = 1 - \frac{\sum (O-P)^2}{\sum (O-Oavg)^2}$$

$$PBIAS = \frac{\sum(O-P)}{\sum(O)} * 100$$

O – observationP – predictionOavg – average of observations


| 0 : Oavg is better then model, 1 : perfect model 0<br>NSE > 0.5 : Acceptable, NSE > 0.65 : good -1 | PBIAS : [-∞, +∞], +ve -> under, -ve -> over<br>0 : perfect model<br>-10% to 10% : good for flow<br>-25% to 25% : good for nutrient loads |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|


Moriasi et al. (2007) Ritter and Munoz-Carpena (2013)




## Output Maps: Source Level









Landuse

Runoff (cm/ha/yr)

#### Unattenuated TP (kg/ha/yr)

### AVERAGE ANNUAL TP LOAD (unattenuated) BY LANDUSE

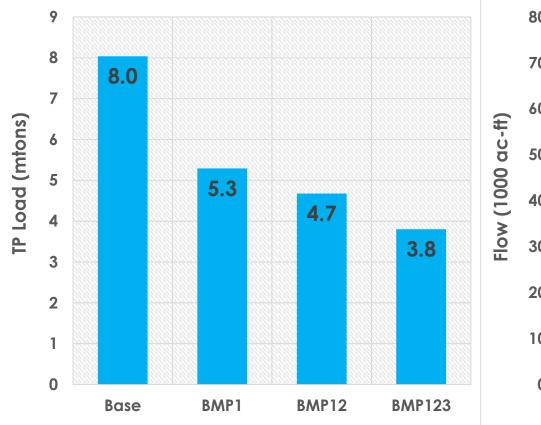


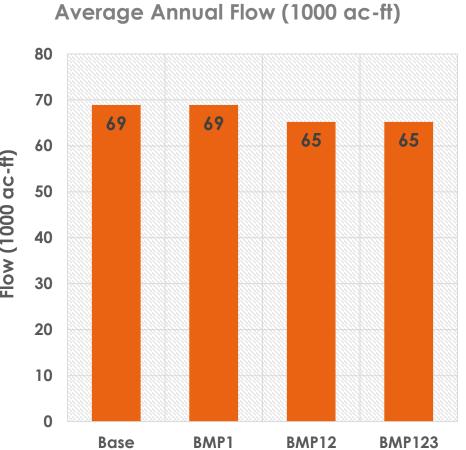
| Land Use                    | Area (ha) | Mean (kg/ha) | Sum (kg)    |
|-----------------------------|-----------|--------------|-------------|
| Wetland Forested Mixed      | 1009      | 0.018        | 18.02       |
| Cypress                     | 4416      | 0.013        | 59.23       |
| Wetland Hardwoods           | 1270      | 0.014        | 18          |
| Citrus Groves               | 1812      | 0.309        | 559.79      |
| Scrub and Brushland         | 1110      | 0.025        | 27.49       |
| Barren Land                 | 165       | 0.834        | 137.64      |
| Hardwood Conifer Mixed      | 843       | 0.023        | 19.51       |
| Row Crops                   | 3324      | 1.45         | 4819.59     |
| Improved Pasture            | 7851      | 0.406        | 3188.69     |
| Freshwater Marshes          | 1156      | 0.013        | 15          |
| Low Density Residential     | 304       | 0.158        | 48          |
| Groves and Orchards         | 205       | 2.452        | 502.6       |
| Commercial and Services     | 101       | 0.698        | 70.49       |
| Woodland Pasture            | 2321      | 0.331        | 768.36      |
| Undeveloped Urban Land      | 6         | 0.095        | 0.57        |
| Unimproved Pasture          | 1339      | 0.188        | 251.72      |
| Wetland Coniferous Forest   | 90        | 0.022        | 1.97        |
| Emergent Aquatic Vegetation | 23        | 0.029        | 0.66        |
| Hardwoods                   | <u>69</u> | 0.028        | <u>1.93</u> |
| Total                       | 27414     |              | 10509.26    |



Protecting and Restoring America's Everglades

## FEEDER CANAL BASIN BMP Scenarios


# Best Management Practices (BMPs)


- Restoration Strategy
- FDACS and UF IFAS BMP Manuals
- Types and Characteristics
  - Type 1 Non-structural/Owner (fertilizer, record keeping) Slow Less Effective
  - Type 2 Structural/Cost Share (irrigation, fencing, storm R/D) Moderately Fast Moderately Effective
  - Type 3 Innovative (chemical treatment) High Cost Fast Highly Effective
- BMP1 = Type 1, BMP12 = Type1+Type2, BMP123 = Type1+Type2+Type3
- > WAM BMP Parameterization was based on earlier studies

# Effectiveness of BMPs

17

Average Annual TP Loads (mt)





Protecting and Restoring America's Everglades

# Summary

- Successfully implemented WAM to model existing conditions in Feeder Canal Basin.
- Agricultural activities contribute the most to TP loads generated in the basin (Row crops being the highest contributor).
- Results indicate that TP loads can be potentially reduced by 34% to 53% of existing loads under BMP1 and BMP123 implementation scenarios, respectively.
- Similar study was done for L28 Canal Basin. Currently we are expanding our study area to BCNP Gap Basin adjacent to FC and L28 Basins.
- ▶ This work can provide useful insights to WERP planning process.

## Acknowledgements

Dr. Naja – chief scientist at the Everglades Foundation

Protecting and Restoring America's Everglades





Dr. Yogesh Khare

ykhare@evergladesfoundation.org