Next Steps Towards Recovery of the Cape Sable Seaside Sparrow

Dr. Tom Virzi Research Director Ecostudies Institute

ECOSTUDIES INSTITUTE

Mission - Ecostudies Institute is dedicated to understanding and conserving native populations of birds and other wildlife and their habitats.

- Founded in 2001
- Based in East Olympia, WA

Our core beliefs

- Biodiversity and intact habitats and ecosystems are important to the wellbeing of humans.
- Sound science should guide the conservation, management, and restoration of birds and wildlife.
- Disseminating results of scientific research promotes informed decision making and public involvement in conservation.

CSSS Distribution

- 6 Subpopulations
 - Large: B, E
 - Small: A, C, D , F
- ENP rangewide helicopter survey
- Demographic
 monitoring in
 subpopulations
 A, B and D

Population Estimate

CSSS population estimate based on 2015 ENP rangewide survey data

- Rangewide population estimate
 based on ENP survey data ~ 3,216
- Raw count data x multiplier (16x)
- Problems with multiplier/estimate
 - No estimate of precision
 - Surveys not replicated
 - Multiplier assumptions not valid
 - Detection probability = 1.0
 - Sex ratio is 1:1 (balanced)
 - Sparrows are not detected at distances > 200 m

Population Trends (Demographic Study Plots)

Pop A – Continued decline

•

•

 \bullet

- Pop D – Stable (variable)
- Pop B – Increasing (until 2016)

CSSS Ecology

- Habitat Requirements
 - Marl prairies (large areas)
 - Fire history ≥ 3 years
 required for breeding
- Survivorship
 - CSSS survival ~ 2-3 yrs
- Reproduction
 - Mean nest height ~15 cm
 - Nesting cycle ~ 30-40 d
 - Nest success ~ 0.40
 - Multi-brooding necessary

Subpopulation A

- Reduces stochastic risk for entire CSSS population
- Sole remaining breeding population in Pop A?
- Dispersal rates too low to support recovery
- Translocation likely necessary to aid recovery

Subpopulation E

- Second 'core' subpopulation
- Spreads out stochastic risk in eastern Everglades
- Pop E likely most important source of recruits to A and other small subpopulations
- Loss of critical habitat in Pop E could rapidly affect other subpopulations

Subpopulation C

- Crossroad for dispersal among subpopulations
- Opportunity for 3rd viable subpopulation in the eastern Everglades
- Closest suitable habitat for shift of Pop E in response to potential habitat loss

Next Steps

- Population estimation
 - Improve current estimate
 - Subpopulation level
- Demographic modeling
 - Meta-analysis of existing long-term demographic data
 - Relate demographic data to habitat modeling results
- Demographic monitoring
 - Continue in subpopulations A and B
 - Add subpopulations C and E
- Translocation
 - Subpopulation A

Acknowledgements

- Gary Slater, Ecostudies
- Michelle Davis, Ecostudies
- Rick Fike, USFWS
- Sandra Sneckenberger, USFWS
- Miles Meyer, USFWS
- Tylan Dean, ENP
- Lori Oberhofer, ENP
- Mario Alvarado, ENP
- Tom Dreschel, SFWMD
- Martha Nungesser, SFWMD
- Rick Lathrop, Rutgers
- Jim Trimble, Rutgers
- Supporting Agencies
 - U.S. Fish & Wildlife Service
 - Everglades National Park
 - South Florida Water Management District

PARK SERVICE

ECOSTUDIES INSTITUTE

