

WETLAND RESTORATION AT BUCK ISLAND RANCH A SUCCESS STORY?

G. Sonnier, P. Bohlen, H. Swain, S. Orzell, E. Bridges and B. Boughton

The Wetland Reserve Program

WHERE WE WORK

Florida's Heartland

Archbold Station and MAERC Archbold Research Sites Conservation Lands Avon Park Air Force Range Lake Wales Ridge Florida's Heartland

> Lake Okeechobee

WRPs at Buck Island Ranch The South Marsh and East Marsh

South marsh and East Marsh (748 acres)

Objectives

1- Was the hydrological restoration successful at restoring hydrology?

H1= Sites are becoming wetter

2- Was the hydrological restoration successful at restoring plant communities?

H1 = Obligate and facultative wetland species will increase in abundanceH2 = Floristic quality increased following restoration

Material & Methods: Buck Island Ranch a fully operational cattle ranch

	Improved pastures	Semi-native pastures
Cattle load	+++	+
Fertilization	++	0
Seeding	+++	0
Ditching	+++	+

Material & Methods: Buck Island Ranch a fully operational cattle ranch

Wetland within improved pastures

Wetland within semi-native pastures

Material & Methods: WRPs at Buck Island Ranch The South Marsh and East Marsh

WRPs are located in **semi-native pastures** and in **lowest elevations** of the ranch

Material & Methods: Sites & Timeline

Material & Methods: Following Water Levels

 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 ...

 Groundwater wells
 Hydrological restoration
 Hydrol

Material & Methods: Following Shift in Vegetation

- Transects established in 2005 in different plant community types.
- 10 plots along each transect for a total of 300*1 m² quadrats.
- Second sampling in 2012.
- Record presence and cover of each vascular species.

Material & Methods: Following Shift in Vegetation Wetland indicator status

Facultative Upland

Facultative Wetland

Obligate Upland

Facultative

Diversity of Obligate Wetland species Cumulative Cover of Obligate Wetland species

Material & Methods: Following Shift in Vegetation Specialist vs. ubiquitous species as indicator of wetland quality (0-10)

Canna flaccida

Material & Methods: Statistical Analysis

- GDW: Time series
- Species Survey:
- Permanent transect/plots \rightarrow Repeated measurement design
- Plots are nested within transects \rightarrow Nested design

→ Generalized Linear Mixed Models

Stratified by analysis WRP and vegetation types separately

Objectives

1- Was the hydrological restoration successful at restoring hydrology?

H1= Sites are becoming wetter

2- Was the hydrological restoration successful at restoring plant communities?

H1 = Obligate and facultative wetland species will increase in abundanceH2 = Floristic quality increased following restoration

Results: Hydrology of the South Marsh Numbers of flooded days pre-restoration post-restoration Number of Flooded Days Cumulative Rainfall (cm) 100 120 140

Results: Hydrology of the South Marsh Numbers of flooded days

Results: Hydrology of the East Marsh Numbers of flooded days

Objectives

1- Was the hydrological restoration successful at restoring hydrology?

H1= Sites are becoming wetter

2- Was the hydrological restoration successful at restoring plant communities?

H1 = Obligate and facultative wetland species will increase in abundanceH2 = Floristic quality increased following restoration

Results: Shift in Wetland Indicator Status

Results: Shift in Floristic Quality

Take Home Message

- Hydrological restoration **increased hydroperiod** in the South Marsh, but we could not confirm it did so in the East Marsh.

 Hydrological restoration increased cover of Obligate Wetland Species.
Cover of facultative wetland species do not necessarily increased.

- Hydrological restoration **improved floristic Quality** in both WRPs.

Take Home Message

- Beta diversity increased suggesting that sites are becoming **more heterogeneous** following restoration.

- Most plots were grazed suggesting grazing is not detrimental to restoration success

Acknowledgments

Betsey Boughton

Staff/interns at MAERC Staff/interns at Archbold

Funding

Thank you. Any Questions?

