PREY SELECTION BY THE LITTLE BLUE HERON (EGRETTA CAERULEA) IN GREAT WHITE HERON NATIONAL WILDLIFE REFUGE

Emilie R. Kohler, Marisa T. Martinez, Dale E. Gawlik, and Stephanie S. Romañach

Human Induced Rapid Environmental Change (HIREC) (Sih et al. 2011)

- HIREC and coastal systems
- Management response

Habitat suitability models for wading birds

CERP restoration success metric

Understanding habitat requirements

Factors Influencing Foraging Habitat Selection

Factors Influencing Foraging Habitat Selection

Little Blue Heron Habitat Suitability Model

- Physical parameters
- Landscape scale

Why Little Blue Herons (LBHE)?

- Restrictive foraging requirements
 - Diurnal foragers
 - Leg length constraint
- Species of concern

Why Little Blue Herons (LBHE)?

- Restrictive foraging requirements
- Species of concern
- Wide Distribution

Map by Cornell Lab of Ornithology Range data by NatureServe

Little Blue Heron Habitat Suitability Model

- Physical parameters
- Landscape scale
- Lacks prey assessment

Improve Habitat Suitability Model

Prey assessment

Diet assessment

Diet Composition Affects Wading Bird Productivity

Prey Item	Colony 73 (2008)	Lox West (2008)	New Colony 4 (2009)
Crayfish	60	65	55
Small fishes	0.6	22	14
Sunfish	0.2	2	6
Shrimp	0	0.2	1
Aquatic insects	2	3	3
Terrestrial insects	22	4	6
Vertebrates	0.2	0	1
Garbage	15	4	14
Mean total kcal (SE)	6.56 (0.97)	4.89 (1.26)	6.41 (0.43)
n	54	33	144

Boyle 2014

Varying nutritional values of prey

Little Blue Heron Diet Composition

- Generalists
- Diet shift spatially & temporally

LEGEND

Map by Cornell Lab of Ornithology Range data by NatureServe

Coastal Brazil78% Blue crabs

Map by Cornell Lab of Ornithology Range data by NatureServe

- Coastal Brazil
- 80% crabs
 - 65% Mangrove
 Tree Crabs &
 M. rubripes

Coastal BrazilKillifish & shrimp

- Puerto Rico
- Only fiddler crabs

Map by Cornell Lab of Ornithology Range data by NatureServe

- Tampa Bay
- Blue crabs, polychaetes, isopods

Map by Cornell Lab of Ornithology Range data by NatureServe

- Florida Keys
- Unknown

Great White Heron National Wildlife Refuge

Foraging Distribution Survey

- 2016 breeding period
- Biweekly
- Recorded locations & abundance

Determining Prey Availability

Sampled prey communities with 1 m² throw trap

Diet Analysis

- 53 samples from 26 nests
- Chicks aged 1 to 4 weeks

Results

- Available prey abundance & biomass
- Prey biomass in colony boluses & occurrence in nests

Available Prey Abundance

Available Prey Biomass

Available Prey Biomass

Crabs

- 35% available prey abundance
- 45% available prey biomass
- <1% fully aquatic crabs, 15% of nests</p>
- 3% semi-terrestrial crabs, 38% of nests

Available Prey Biomass

Shrimp

- 47% available prey abundance
- 23% available prey biomass
- 39% bolus biomass
- 89% of nests

Available Prey Biomass

Fish

- 18% available prey abundance
- 32% available prey biomass
- 56% bolus biomass
- 100% of nests

Gulf Toadfish in Bolus

- Occurred in 57% of boluses
- 38% of total bolus biomass
- 57% of the fish bolus biomass

Other Arthropods

Prey Characteristics

Histogram of prey lengths

Conclusions

- 77% of nestling diet is shrimp and Gulf Toadfish
- Highly selective for Gulf toadfish, moderately selective for shrimp, weak selection for crabs
- Consumed terrestrial prey
- Regional differences in prey selection
- LBHE prey range from 4 mm-172 mm

Future work

- Revisit nest colony & locate other colonies
- Prey sampling
- Foraging distribution surveys

Future work

- Assess influence of key prey species in habitat selection
- Predict changes to Little Blue Heron foraging habitat

Acknowledgments

Dr. Dale E. Gawlik (PI) Dr. Stephanie Romanach (Co PI) Marisa Martinez FAU Avian Ecology Lab

