Fine Scale Tracking of Water Level by Sunfish: Implications for Wading Bird Foraging

Greg Hill Florida International University, Earth and Environment Department Research Team: Dr. Jennifer Rehage FIU, Dr. Mark Cook SFWMD, Eric Cline SFWMD

PIT Tag: Passive Integrated Transponder

- electronic microchip (biocompatible glass case)
- Unique Identifier
- No power source required

Used to study fish of all shapes.....

Medium

....and sizes

Small

Large

Passive Antenna System ("Fish tollway")

"Pass through"

antenna

- 12V Battery
- Reader (data logger)
- Tuning adjuster
- Antenna

"Pass over" antenna

PIT Technology: "Sun-Pass for Sunfish"

Ridge

Alligator hole

Lotic Systems

- Flowing water (i.e. rivers, streams)
- Aquatic faunal movements well studied

Lentic Systems

- static water (i.e. lakes, ponds, wetlands)
- Aquatic faunal movements less well understood

Arctic Grayling (Thymallus Arcticus)

Figure X - Maximum displacement of Arctic grayling (a), ratio of non-migrants to migrants (b), and detections of PIT tagged grayling at antenna stations (c) throughout the Kuparuk watershed, 2012.

- PIT System application to river systems
- Large scale tracking of seasonal migratory patterns

How do Everglades fish respond to changing water levels?

Fine-scale movement & habitat selection

Fish distribution & concentration across the landscape

Reversal: Sudden increase in water levels which re-flood habitats during a typical dry down period

Study Site

- Loxahatchee Impoundment Landscape Assessment (LILA)
 - Working model of Everglades freshwater marsh
 - Controlled water delivery system

Field Enclosures:

- habitat & depth gradient

Mesh Lining

5-6 fish/enclosure (30-36 total)

Depth gauges

12 V

Reader

Research Questions

- 1.) Increasing vs. decreasing water levels
- 2.) Seasonal vs disturbance (reversal) changes in water level
- 3.) Varying rates of change in water level

Fish Detection Data

Response variables:

Activity Level:

of movements between habitats(Daily average, adjusted for depth)

Habitat Use:

Proportion of detections in each habitat (Daily average across all fish)

Habitat use variation with season

- How do fish respond to increasing vs. decreasing water levels?
- How do fish respond to seasonal vs Reversal changes?

Fish were most active during the reversal and increasing water levels

Diel Habitat Use Patterns

How do fish respond to varying rates of depth change?

Fish were active during all increasing rates but only respond to recessions during rapid change

Why Relevant?

Food Web Dynamics

- More active fish = harder to catch, harder to locate and more energy expended for predators
- More spread out fish populations = lower quality foraging patches

Conservation Implications

Re-flooding events causes immediate responses in fish

Dispersal and re-distribution of fish populations

Loss of dense prey concentrations

Recovery of wading bird colonies

Metric of success for Everglades restoration

Importance of freshwater inflows, water management

Thank You!

RINE

Frequency of recession rates across 3 hydrostations (9, 63, P33) in cm for 2009 (strong recession), 2010 (wet year) and 2011 (drought year). Dashed line = rates above 1.5 cm.

