MODELING STRATEGIES TO PROVIDE HOLISTIC PICTURE OF CLIMATE CHANGE IMPACTS IN SOUTH FLORIDA

2017 Greater Everglades Ecosystem Restoration Coral Spring, FL

Younggu Her

Tropical Research and Education Center - Agricultural and Biological Engineering Department, IFAS/UF

April 20, 2017

Background

Contents

Background

Current Research

- Develop Models
- Collect Data
- Apply Models
- Project Climate
- Sea Level Rise
- Saltwater

Relevance to ER

Potential Contribution

Future Research Direction

- Climate change / sea level rise
 - Coming slowly but eventually (interglacial, Holocene)
 - Accelerated by human activities (fossil fuel)

http://iloveedenvale.net/2 016/04/have-we-becomeblase-about-crime/

- Simulation / modeling studies
 - Help understand the processes
 - Enables what-if scenario analyses
- Holistic view of the hydrological/agricultural/ecological impacts of CCSLR

Current Research: Model Development

Contents

Background

Current Research

- Develop Models
- Collect Data
- Apply Models
- Project Climate
- Sea Level Rise
- Saltwater

Relevance to ER

Potential Contribution

Future Research Direction

- Develop and apply
 - Based on the understanding of processes and mechanisms
 - Causal relationship between variables and processes

Prediction/Forecast/Projection

Current Research: Data Collection

Contents

Background

Current Research

- Develop Models
- Collect Data
- Apply Models
- Project Climate
- Sea Level Rise
- Saltwater

Relevance to ER

Potential Contribution

Future Research Direction

Input data

 Describing the system of interest: landscape, weather, & human activities (agricultural practices and canal operation)

Current Research: Data Collection

Contents

Background

Current Research

- Develop Models
- Collect Data
- Apply Models
- Project Climate
- Sea Level Rise
- Saltwater

Relevance to ER

Potential Contribution

Future Research Direction

Input data

 Describing the system of interest: landscape, weather, & human activities (agricultural practices and canal operation)

Current Research: Data Collection

Contents

Background

Current Research

- Develop Models
- Collect Data
- Apply Models
- Project Climate
- Sea Level Rise
- Saltwater

Relevance to ER

Potential Contribution

Future Research Direction

Input data

 Describing the system of interest: landscape, weather, & human activities (agricultural practices and canal operation)

Contents

Background

Current Research

- Develop Models
- Collect Data
- Apply Models
- Project Climate
- Sea Level Rise
- Saltwater

Relevance to ER

Potential Contribution

Future Research Direction

Develop simulation models

- Nutrient loadings from Upper/Lower Kissimmee watersheds
- Soil and Water Assessment Tool (SWAT) USDA-ARS

- Identify critical areas producing much pollutants
 - Nutrient loadings from Upper/Lower Kissimmee watersheds
 - But now simulating only hydrological processes

Contents

Background

Current Research

- Develop Models
- Collect Data
- Apply Models
- Project Climate
- Sea Level Rise
- Saltwater

Relevance to ER

Potential Contribution

Future Research Direction

Groundwater Recharge (mm) in Year 1979

- Identify critical areas producing much pollutants
 - Nutrient loadings from Upper/Lower Kissimmee watersheds
 - But now simulating only hydrological processes

Contents

Background

Current Research

- Develop Models
- Collect Data
- Apply Models
- Project Climate
- Sea Level Rise
- Saltwater

Relevance to ER

Potential Contribution

Future Research Direction

Percolation (mm) in Year 1979

Contents

Background

Current Research

- Develop Models
- Collect Data
- Apply Models
- Project Climate
- Sea Level Rise
- Saltwater

Relevance to ER

Potential Contribution

- Identify critical areas producing much pollutants
 - Nutrient loadings from Upper/Lower Kissimmee watersheds
 - But now simulating only hydrological processes

Current Research: Climate Projection

Weather/climate projections (133 stations)

How does future Florida weather look like?

Contents

Background

Current Research

- Develop Models
- Collect Data
- Apply Models
- Project Climate
- Sea Level Rise
- Saltwater

Relevance to ER

Potential Contribution

Future Research Direction

11

Current Research: Climate Projection

Contents

Background

Current Research

- Develop Models
- Collect Data
- Apply Models
- Project Climate
- Sea Level Rise
- Saltwater

Relevance to ER

Potential Contribution

- Weather/climate projections (133 stations)
 - How do future Florida storm events look like?

Current Research: Climate Projection

Contents

Background

Current Research

- Develop Models
- Collect Data
- Apply Models
- Project Climate
- Sea Level Rise
- Saltwater

Relevance to ER

Potential Contribution

- Weather/climate projections (133 stations)
 - How do future Florida storm events look like?

Contents

Background

Current Research

- Develop Models
- Collect Data
- Apply Models
- Project Climate
- Sea Level Rise
- Saltwater

Relevance to ER

Potential Contribution

- Sea level rise saltwater intrusion
 - Contaminate freshwater resources: drinking water & irrigation
 - Soil salinity: damage to crops and infrastructure
 - Unexpected/unfavorable changes in ecosystem

Contents

Background

Current Research

- Develop Models
- Collect Data
- Apply Models
- Project Climate
- Sea Level Rise
- Saltwater

Relevance to ER

Potential Contribution

- What causes saltwater intrusion
 - Natural process, but can be a problem
 - Climate changes
 - Sea level rise, increase in ET & prolonged drought
 - Human activities
 - Pumping groundwater for irrigation & urbanization
 - Coastal (Florida) & island (the Caribbean)

Contents

Background

Current Research

- Develop Models
- Collect Data
- Apply Models
- Project Climate
- Sea Level Rise
- Saltwater

Relevance to ER

Potential Contribution

Future Research Direction

Saltwater intrusion modeling

- SWAT-MODFLOW integration: Inland watershed
 - Cho (2007, Virginia Tech: DANSAT); Cho et al. (2010)
 - Kim et al. (2008, KICT): SWAT-MODFLOW
 - Guzman et al. (2015): SWATmf
 - Bailey (2015, Colorado State University) : SWAT-MODFLOW
- MODFLOW-MT3DMS (SEAWAT): Much simplified GW recharge
 - Guo & Bennett (1998); Guo & Langevin (2002): SEAWAT
 - Langevin (2003): Biscayne Bay & Florida Bay
 - Chang (2012, Auburn) & Chang and Clement (2012)
- Cho, J.P., 2007. A comprehensive modeling approach for BMP impact assessment considering surface and ground water interaction. Doctoral Dissertation, Virginia Tech.
- Cho, J., Mostaghimi, S. & Kang, M.S., 2010. Development and application of a modeling approach for surface water and groundwater interaction. Agricultural water management, 97(1):123-130.
- Kim, N.W., Chung, I.M., Won, Y.S. and Arnold, J.G., 2008. Development and application of the integrated SWAT-MODFLOW model. Journal of Hydrology, 356(1):1-16.
- Guzman, J.A., Moriasi, D.N., Gowda, P.H., Steiner, J.L., Starks, P.J., Arnold, J.G. and Srinivasan, R., 2015. A model integration framework for linking SWAT and MODFLOW. Environmental Modelling & Software. 73:103-116.
- Bailey, R.T., 2015. SWAT-MODFLOW Tutorial: Documentation for preparing model simulations. Department of Civil and Environmental Engineering, Colorado State University.
- Guo, W. and Bennett, G.D., 1998. Simulation of saline/fresh water flows using MODFLOW. In Proceedings of MODFLOW '98 conference at the international ground water modeling center, Colorado School of Mines, Golden, Colorado (Vol. 1, pp. 267-274).
- Guo, W. and Langevin, C.D., 2002. User's guide to SEAWAT; a computer program for simulation of three-dimensional variable-density ground-water flow (No. 06-A7).
- Langevin, C.D., 2003. Simulation of submarine ground water discharge to a marine estuary: Biscayne Bay, Florida. Ground Water, 41(6):758-771.
- Chang, S.W., 2012. Dynamics of Saltwater Intrusion Processes in Saturated Porous Media Systems. Doctoral dissertation, Auburn University.
- Chang, S.W. and Clement, T.P., 2012. Experimental and numerical investigation of saltwater intrusion dynamics in flux-controlled groundwater systems. Water Resources Research, 48(9): WR012134.

Contents

Background

Current Research

- Develop Models
- Collect Data
- Apply Models
- Project Climate
- Sea Level Rise
- Saltwater

Relevance to ER

Potential Contribution

Relevance to ER

Contents

Background

Current Research

- Develop Models
- Collect Data
- Apply Models
- Project Climate
- Sea Level Rise
- Saltwater

Relevance to ER

Potential Contribution

Future Research Direction

Water delivers nutrients!

Abtew, W., Huebner, R.S. and Pathak, C., 2007. Hydrology and hydraulics of South Florida. In *World Environmental and Water Resources Congress 2007: Restoring Our Natural Habitat* (pp. 1-13).

Potential Contribution to ER

Contents

Background

Current Research

- Develop Models
- Collect Data
- Apply Models
- Project Climate
- Sea Level Rise
- Saltwater

Relevance to ER

Potential Contribution

- Mass balance (budget calculation)
 - Water and partitioning, sediment, and nutrient balance
 - Tracking along paths from Lake Okeechobee to Florida Bay
 - Critical area identification
 - Is the equilibrium reached?

Potential Contribution to ER

Contents

Background

Current Research

- Develop Models
- Collect Data
- Apply Models
- Project Climate
- Sea Level Rise
- Saltwater

Relevance to ER

Potential Contribution

- Many simulation models for individual systems
 - Not integrated yet!
 - Agricultural systems are not considered enough!
 - Regional simulation models are too complicated to use!
 - Spatially too coarse to show local details!

Potential Contribution to ER

Contents

Background

Current Research

- Develop Models
- Collect Data
- Apply Models
- Project Climate
- Sea Level Rise
- Saltwater

Relevance to ER

Potential Contribution

- Unified Fine-resolution Large-scale (U.F.L.) modeling
 - Provide more consistent outputs across disciplines
 - Agricultural, hydrological, and ecological effects together
 - Promote more consistent decision making across areas
 - Efficient State-level effort (e.g. critical areas)

Future Research Direction

Contents

Background

Current Research

- Develop Models
- Collect Data
- Apply Models
- Project Climate
- Sea Level Rise
- Saltwater

Relevance to ER

Potential Contribution

- Unified Fine-resolution Large-scale (U.F.L.) modeling
 - Provide more consistent outputs across disciplines
 - Promote more consistent decision making across areas

Future Research Direction

Contents

Background

Current Research

- Develop Models
- Collect Data
- Apply Models
- Project Climate
- Sea Level Rise
- Saltwater

Relevance to ER

Potential Contribution

- Identifying the resilient hydrological equilibrium
 - What does change hydrological equilibrium?
 - How quickly can hydrological equilibrium be reached?
 - Is the equilibrium sustainable and resilient?

THE STONE AGE DID NOT END FOR LACK OF STONE

Thank you!

Younggu Her

April 20, 2017