NEW CLIMATE CHANGE INFORMATION FOR ENHANCING EVERGLADES RESTORATION CLIMATE PREPAREDNESS AND RESILIENCE

Glenn B. Landers, P.E.

USACE Jacksonville District GEER Conference, Coral Springs, FL April 19, 2017

PRESENTATION OUTLINE

- CISRERP 2014 and 2016 Findings on Climate Change
- The RECOVER 5-Year Plan and Climate Change
- USACE Climate Preparedness and Resilience Guidance
- Climate Change and SLR Scenarios for CERP Planning

CISRERP 2014 REPORT FINDINGS ON CLIMATE CHANGE AND SLR

- Potential significant changes in precipitation and temperatures coupled with increasing sea level have important implications for the CERP (under some future scenarios there is "...insufficient freshwater to sustain the natural and built systems.")
- Climate change is not adequately considered in the CERP planning process and should be integrated into future ongoing analysis and monitoring
- CERP planners should consider implications of sea-level rise and potential hydrologic change in systemwide planning and project prioritization
- High priority research needs related to climate change and Everglades restoration

+2 FEET SLC CONDITIONS with PEAT LOSS IN SRS

3

CISRERP 2016 REPORT FINDINGS ON CLIMATE CHANGE AND SLR

- Major advances in knowledge since the CERP was developed in the 1990s:
 - Predrainage hydrology
 - Climate change and sea level rise
 - Feasibility of storage alternatives
- A reexamination of CERP restoration goals is in order should consider the need for benefits that are robust in the face of climate change or mitigate its effects
- Uncertainties of future storage and climate should be incorporated into CERP planning
- A systemwide analysis of the potential future state of the Everglades ecosystem needs to be conducted to inform decision making – Should include scenario analyses of storage and climate change

INCORPORATING CLIMATE CHANGE IN THE RECOVER: 5-YEAR PLAN

- 1. Science Review and Integration
 - Consider new (or updated) drivers related to climate change
- 2. RECOVER's role in CERP implementation
- 3. Recommendations for refinements of **CERP Interim Goals (IG)**
- 4. Recommendations for refinements of **CERP Interim Targets (IT)**
- 5. Opportunities for Adaptive Management
- 6. Communication of RECOVER Science

SCIENCE INTEGRATION

Science Review and Integration Tasks	FY2017	FY2018	FY2019	FY2020	FY2021
Task 1 – Update Conceptual Ecological Models (CEMs) and Hypotheses Clusters					
Task 2: Vulnerability Analysis				14	
Task 3: Update Performance Measures					
Task 4: Review 2009 MAP					i dan
Task 5: Update MAP components					

USACE CLIMATE PREPAREDNESS AND RESILIENCE GUIDANCE

- ER 1100-2-8162: Incorporating Sea Level Change in Civil Works Programs, 31 Dec. 2013
 - <u>Permanent</u> Design Requirement for all phases of Corps Civil Works subject to tidal influence
 - Consider three future scenarios per National Research Council guidance
- ETL 1100-2-1: <u>Procedures To Evaluate Sea Level</u> <u>Change: Impacts, Responses and Adaptation,</u> 30 June 2014 to 31 March 2019
 - Planning Horizon extended to 100 years
- ECB 2016-25: <u>Guidance for Incorporating Climate</u> <u>Change Impacts to Inland Hydrology in Civil</u> <u>Works Studies, Designs, and Projects</u>, 16 Sep 2016 to 16 Sep 2018

CECW-CE Circular No. 1165-2-211	Department of the Army U.S. Army Corps of Engineers Washington, DC 20314-1000	EC 1165-2-211
- All		1.84.95%
		I stay south
WATES INCORPOR INCORPOR in incorporating the discit a managing, planning, engines projects and systems of proje Climate Change (IPCC) pool call possibly heyond, which a largest is to canted and catures planes of Circil Works program	EXPREST JULY 2011 EXPREST JULY 2011 RESOURCE POLICIES AND AUTHORITY ATTRO SEALEVEL CHANGE CONSIDER/ IN CIVIL WORKS PROGRAMS IN CIVIL WORKS PROGRAMS on index physical affains of projectal fame or oting denigring, constracting, operating, and mai ing, denigring, constracting, operating, and mai to. Second direct research by the law proves the continued or sectorated global warrhing for a case a cannot by sea-loval change must be aim.	ES TRONS to-ford change in theiring USACE taning USACE the 21st Century H many construct tradewise should
 <u>Applicability</u>: This Circula responsibilities and is applicable immediately, and supervalue al infere CECW of any problems. <u>Destribution Statement</u>, Tai- 	applies to all UNACE clearments having Cleaf to it to all UNACE Cost Works activities. This gas previous paidance on this subject. Districts are with implementing this paidance.	orka Abroe is officerive d Deviniens shalf
united 185	personation is approved for public release: direct	
 <u>References</u> Required and rely end of this document. 	tied references are at Appendix A. A glossary is	instanted at the
A Deveraphic Extent of Applicat	atas	
a USACE voider toronization main operated locally or registrally. For sun local (OMSL) and local (or van local MSL reflect the integrated all seconarygraphic, or alterospheric origi essensignaphic, or alterospheric origi essensignaphic, or alterospheric origination include backwater profiling should al water method elevation for each profil water method elevation for each profil	rangement projects are plasmad, designed, constru- file crazors, it is response to dissinguish hatever intro-7 means son local (ASS). At any location, or of the second second second second second even of the dependent of the televant, ange must be considered in every TAACE const- ind inflasmon. Thevial distinct (stack as flood at while machine potential relative analogy in son machine potential relative analogy of change in law, where appropriate. The base lawd of potential interview.	visid and r global musas thongos in nologis, discolvity as discolvity as discolvity as discolvity as discolvity as
		1

HYDROLOGIC + TEMPERATURE CHANGES

TEMPERATURE/RAINFALL

- +5 to +9 F by 2100
- ET: +15-20 %
- Rainfall: + / 20%
- More Intense Rainfall Events,
 But More Severe Droughts

HURRICANES

 Warmer ocean temperatures create potential for stronger hurricanes (e.g., Andrew, Katrina)

LAKE OKEECHOBEE DROUGHT

- All time low stages in 2007 and 2008
- Effect of Climate Change on natural cycle of hurricanes is uncertain

8

Climate and Sea Level Rise Scenarios

an and the first and the first state of the second se

Potential changes in Rainfall Extremes : Do we have "actionable science"?

Uncertainty due to significant model spread (General Circulation Model & Regional Climate Model Combinations) **50-Year Location: West Palm Beach International Airport**

Tropical Storms & Climate Change

- Tropical cyclones to shift towards strong storms (2-11% intensity increase by 2100)
- Decrease in global frequency of tropical cyclones (6-34%)-recent paper says this will increase!
- Increase in the frequency of the most intense cyclones
- Increase in rainfall rate, 20% within 100 km of storm center

Projected Changes in Atlantic Hurricane Frequency by Category

CERP SLR SCENARIOS

- Reference C&SF Restudy Report, Apr 99, Appendix B, pp. B-262 to B-269.
- EPA was designated as the lead federal agency for guiding coastal communities in preparing for SLR.
- CERP SLR Scenarios were modeled with SLR in 2050
 +6 inches above 1995 levels per EPA guidance
- Modeling indicated that some coastal canal stages might need to be raised +6 inches to mitigate potential saltwater intrusion, and that additional water use restriction days might be needed

RELATIVE SEA LEVEL CHANGE SCENARIOS FOR KEY WEST, FL (FEET) (USACE, 1989-2014)

Year	USACE Low	USACE Int. (Mod. NRC Curve I)	USACE High (Mod. NRC Curve III)
Scenario >	Continue Historic Relative SLC	Global SLC +0.5m by 2100	Global SLC +1.5m by 2100
1992	0.0	0.0	0.0
2010	0.1	0.2	0.3
2060	0.5	0.9	2.2
2100	0.8	1.8	5.1
2110	0.9	2.1	6.0
2120	0.9	2.4	7.0

Notes: USACE projections are for historic, modified NRC Curve I and modified NRC Curve III rates of sea level change developed for Key West, Florida per USACE Engineering Circular (EC) 1105-2-186 (1989), 1165-2-211 (2009) and Engineering Regulation (ER) 1100-2-8162 (2013). These documents were based on guidance in the National Research Council (NRC) report, *Responding to Changes in Sea Level; Engineering Implications* dated September, 1987. The projections are developed using the local historic rate of sea level rise at Key West as reported by NOAA (2.20 mm/yr). The USACE and NRC guidance documents do not address dates beyond 2100. All projections start from 1992 control for the national survey datum.

RELATIVE SEA LEVEL CHANGE SCENARIOS FOR KEY WEST, FL (FEET) (NOAA 2012, USACE 2013)

Year	USACE Low NOAA Low	USACE Int. NOAA Int-Low (Mod. NRC Curve I)	NOAA Int-High	USACE High (Mod. NRC Curve III)	NOAA High
Scenario >	Continue Historic Relative SLC	Global SLC +0.5m by 2100	Global SLC +1.2m by 2100	Global SLC +1.5m by 2100	Global SLC +2.0m by 2100
1992	0.0	0.0	0.0	0.0	0.0
2010	0.1	0.2	0.2	0.3	0.3
2060	0.5	0.9	1.8	2.2	2.9
2100	0.8	1.8	4.1	5.1	6.7
2110	0.9	2.1	4.8	6.0	8.0
2120	0.9	2.4	5.6	7.0	9.3

Notes: USACE projections are for historic, modified NRC Curve I and modified NRC Curve III rates of sea level change developed for Key West, Florida per USACE Engineer Regulation (ER) 1100-2-8162 (2013). This ER is based on guidance in the National Research Council (NRC) report, *Responding to Changes in Sea Level; Engineering Implications* dated September, 1987. The projections are developed using the local historic rate of sea level rise at Key West as reported by NOAA (2.20 mm/yr). NOAA projections use the same EC equations modified for different global SLR scenarios. The USACE and NOAA guidance documents do not address dates beyond 2100. All projections start from 1992 control for the national survey datum.

RELATIVE SEA LEVEL CHANGE SCENARIOS FOR KEY WEST, FL (FEET) (USACE 2014 + NOAA 2017)

Year	USACE Low NOAA Low	USACE Int. NOAA Int-Low (Mod. NRC Curve I)	NOAA Int-High	USACE High (Mod. NRC Curve III)	NOAA High
Scenario >	Continue Historic Relative SLC	Global SLC +0.5m by 2100	Global SLC +1.2m by 2100	Global SLC +1.5m by 2100	Global SLC +2.5m by 2100
1992	0.0	0.0	0.0	0.0	0.0
2010	0.1	0.2	0.2	0.3	
2060	0.5	0.9	1.8	2.2	
2100	0.8	1.8	4.1	5.1	8.5
2110	0.9	2.1	4.8	6.0	
2120	0.9	2.4	5.6	7.0	

Notes: USACE projections are for historic, modified NRC Curve I and modified NRC Curve III rates of sea level change developed for Key West, Florida per USACE Engineering Technical Letter (ETL) 1100-2-1 (2014). This ETL is based on guidance in the National Research Council (NRC) report, *Responding to Changes in Sea Level; Engineering Implications* dated September, 1987. The projections are developed using the local historic rate of sea level rise at Key West as reported by NOAA (2.20 mm/yr). NOAA projections use the same EC equations modified for different global SLR scenarios. The USACE and NOAA guidance documents do not address dates beyond 2100. All projections start from 1992 control for the national survey datum.

SEA LEVEL CHANGE SCENARIOS

FLOOD RISK VS. WATER SUPPLY

- Shallow wells are the primary source of drinking water in South Florida communities
- Protecting water supply wells with higher canal stages will increase flooding in many low elevation communities
- Long-term sea level rise will cause saltwater intrusion into wells and create a need for new freshwater sources

Whenes - april 101 Million and allow the Work

CLIMATE CHANGE CONCERNS FOR EVERGLADES RESTORATION

Hydrologic Pattern Changes

- Potential for less frequent and more intense rain events
- Potential increased tropical storm intensity or frequency

Warmer Temperatures

- Evaporation losses up; water supply down
- Stresses on plant, animal, and marine ecosystems
- Changes in growing season and migratory bird patterns
- Changes in water quality (higher temp, lower oxygen, more acidic?)

Sea Level Rise

- Salinity changes in coastal bays, plus tidal creeks and rivers
- Accelerating shoreline retreat due to loss of freshwater peat soils
- Higher water levels in SRS = increasing flood risks (Sparrows, 8.5 SMA)
- Saltwater moving up SRS will eventually threaten water supply wells

