

Evaluation of Inundation Depth and Duration Threshold for Cattail Sustainability

GEER Conference 2017 Kristin Vaughan, E&E Orlando Diaz, SFWMD

Background

- Stormwater Treatment Area 3/4 (STA 3/4) is one of the best performing STAs .
- Emergent Aquatic Vegetation (EAV) cells exposed to high water depth for extended periods during heavy rain events.
- Previous reports show northern (inflow) regions experience the deepest water conditions, potentially stressing the cattail populations.

In-situ Study Objectives

- To identify how inundation depth and duration influence cattail sustainability in STA 3/4 Cell 2A.
- The variables to be discussed are: <u>water</u> <u>depth</u>, <u>cattail density</u>, <u>photosynthetic</u> <u>rate</u>, and <u>leaf elongation</u>.
 - Plant level : Photosynthesis and leaf elongation
 - Community level: Plant density
- Qualitative field observations include: presence of floating cattail, presence of emergent or floating aquatic plants within the plot, and photo-documentation of each plot.

Monitoring Locations

Water Depths in STA-3/4, Cell 2A

Methods: Water Depths from DBHYDRO, WY2011 – WY2016 STA-3/4, Cell 2A: Stations G377-T and G378-H

Solinst® Pressure Transducers, July 2015 – Feb 2016 Five Solinst® Pressure Transducers were installed across STA-3/4, Cell 2A.

Water Depths – DBHYDRO Data

WY2011 - V	WY2016 -Inflow	WY2011 - WY2	016 - Outflow
< 38 cm	5.0%	< 38 cm	20.3%
38 - 61 cm	<u>42.0%</u>	<u> 38 - 61 cm</u>	<u>61.0%</u>
61 -76 cm	27.3%	61 -76 cm	11.5%
76 -91 cm	12.4%	76 -91 cm	4.3%
> 91 cm	13.4%	> 91 cm	3.2%
۷	VY2016	WY2	2016
< 38 cm	0.0%	< 38 cm	0.0%
38 - 61 cm	6.0%	<u> 38 - 61 cm</u>	<u>78.1%</u>
<u>61 -76 cm</u>	<u>51.6%</u>	61 -76 cm	18.9%
76 -91 cm	23.2%	76 -91 cm	1.4%
> 91 cm	19.1%	> 91 cm	1.6%
> 91 cm	19.1%	> 91 cm	1.6%

Water Depths – Solinst® Data

Number of Days per Depth Range Category	% of Days per Depth Range Category	Number of Days per Depth Range Category	% of Days per Depth Range Category
Inflow Wel	ls Average	Outflow We	lls Average
0	0.0	0	0.0
0	0.0	105	47.3
85	38.3	75	33.8
73	32.9	36	16.2
64	28.8	6	2.7
	Number of Days per Depth Range Category Inflow Well 0 0 85 73 64	Number of Days per Depth Range Category% of Days per Depth Range CategoryInflow Wells Average000.000.08538.37332.96428.8	Number of Days per Depth Range CategoryWe of Days per Depth Range CategoryNumber of Days per Depth Range CategoryInflow Wells AverageOutflow We00.000.000.010538.37332.9366428.8

Summary - Water Depths

- Water depths in STA-3/4 Cell 2A during WY2016 were generally deeper in the <u>inflow</u> area of the cell. About 52% of water depth was in the range of 61 to 76 cm, with water depths >76 cm accounting for 42% of the data.
- In contrast, about 78% of the water depths from the <u>outflow</u> area of the cell were in the range of 38 to 61 cm, with water depths >76 cm accounting for only 3% of the data.
- Deeper inundation depths and longer periods of deep water conditions present in the inflow region compared to the outflow region.

Plant Density – Materials and Methods

- Cattail plants categorized into 4 groups:
 - Live adults (>1.5 m in height)
 - Live juveniles (<1.5 m in height)
 - Live reproductive adults (with flower or seed stalk)
 - Dead cattail

- To improve count accuracy, each plot was further divided into subplots using PVC poles.
- For analysis, the number of live juveniles and live adult individuals for each 2 m x 3 m plot were aggregated and converted to number of individuals/m².

Photo from: https://www.licor.com/env/products/photosynthesis/LI-640oXT

Photosynthetic Rate – Materials Methods

- Measured using a LI-6400XT Portable Photosynthesis System (Li-COR, Lincoln, Nebraska, USA).
- Five representative adult plants were selected for measurement in each plot.
- One mature, healthy leaf was selected from each plant for photosynthesis measurement.
- Li-Cor chamber was clamped 6-18 inches from the tip of the leaf and held in place to allow for stabilization before collecting a reading.

Leaf Elongation – Materials and Methods

- The same five plants selected for photosynthesis readings were also used for leaf elongation measurements.
- Shortest and youngest leaf from the inner culm on each plant was identified and flagged (labeled 1-5).
- A measuring pole was used to measure leaf height, from the base of the plant to the tip of the leaf.
- Re-measurement occurred between 7-10 days after the initial measurement.

Leaf elongation rate =

Height₂ –Height₁

of days between measurements

Results – Plant Density

• Plant density was not significantly different between the inflow (14.04 plants/m²) and outflow (13.39 plants/m²) regions of Cell 2A.

Monitoring Zone	Plant Density (plants/m²)	
Inflow	14.04 ± 3.16	
Outflow	13.39 ± 2.80	
<i>P</i> = 0.492		

Results – Photosynthetic Rate

Photosynthetic rate was consistent across the cell, with no significant difference between the inflow (13.90 μmol CO₂ m⁻²s⁻¹) and outflow (13.53 μmol CO₂ m⁻²s⁻¹) regions of the cell.

Monitoring Zone	Photosynthetic Rate (μmol CO ₂ m ⁻² s ⁻¹)	
Inflow	13.90 ± 4.46	
Outflow	13.53 ± 3.04	
<i>P</i> = 0.755		

Results – Leaf Elongation

• Leaf elongation rate in the inflow region (7.46 cm/day) is significantly higher than the outflow region (6.25 cm/day; *p*=0.004).

Monitoring Zone	Leaf Elongation Rate (cm/day)	
Inflow	7.46 ± 1.40	
Outflow	6.25 ± 1.18	
<i>P</i> = 0.004		

Summary – Plant Measurements

• No significant difference in <u>photosynthetic rate</u> or <u>plant density</u> between the inflow and outflow regions.

- <u>Leaf elongation rate</u> was significantly higher in the inflow than the outflow region.
 - Previous data have shown the opposite trend: Greater stress from deep water conditions = lower leaf elongation rate (Chen and Vaughan, 2014).
 - Data suggest deep water conditions may actually stimulate leaf growth rates of juvenile leaves, possibly to restore gas exchange between roots and the atmosphere (Bailey-Serres and Voesenek, 2008).
 - Further investigation warranted.

What's Next?

- 2016 wet season sampling events are complete.
- Continued monitoring through the 2017 wet season.
- A final report of the 2015, 2016, and 2017 sampling results to be completed in late 2017/early 2018.
- A separate component involving test cells will be added later.

Questions?

