

Photosynthetic activity of C_3 and C_4 graminoids in response to inundation in a shrot-hydroperiod wetland

Junbin Zhao Florida International University 18 April, 2017

Location

Levee ~30cm higher than marsh

Dominant species

Muhly grass (*Muhlenbergia capillaris*, C₄)

Mixed-effect models

- Nonlinear relationship between water level and A_{max}
- Amax decline more dramatic in muhly grass
- Significant difference in A_{max} sensitivity to G_s in muhly grass

Chlorophyll fluorescence (Fv/Fm: photosystem II maximum quantum efficiency)

CI: chlorophyll index PRI: photochemical reflectance index (xanthophyll activity)

Nutrients during wet season

Conclusion & implications

- Photosynthesis reduction of dominant plants (particularly muhly grass) in response to inundation is the cause of the lower GEP during wet season
- Photosystem impairment, in addition to stomatal control, is the primary cause of the A_{max} reduction in muhly grass when submerged.
- More studies in inundation needed (e.g. more species, models, etc.)
- Future change in water table seasonal pattern will affect carbon balance of the ecosystem.
- Species competition, C₃ vs C₄

Acknowledgements

- Steve Oberbauer
- Paulo Olivas
- Jessica Schedlbauer
- Jonathan Moser
- Jeremy May
- •

