

Fusing LiDAR with RTK GPS Using Random Forest Regression Shows Promise for DEMs of Mangrove and Sawgrass Soil Heights in Florida's Coastal Everglades

GEER 2017: Coral Springs, FL Hannah Cooper & Dr Caiyun Zhang, Department of Geosciences, Florida Atlantic University April 18, 2017

Significance of Digital Elevation Models (DEMs) in the Everglades

- Restoration requires accurate DEMs to monitor & simulate water levels, water depths & hydroperiods (e.g. Jones et al., 2012).
- Accurate & fine horizontal resolution DEMs are necessary for regional sea-level rise assessments (e.g. Zhang, 2011).

The Everglades hydrologic community agreed upon vertical elevation error threshold of **±15 cm** (Desmond, 2003; Jones et al., 2012).

- High Accuracy Elevation Data (HAED) collected by USGS 1995-2007
 - Pros: Meets the strict error requirements
 - Cons: Coarse horizontal resolution (400 m)
- Light Detection and Ranging (LiDAR)
 - Pros: Fine horizontal resolution (e.g. 2 m)
 - Cons: <u>Does not</u> meet the strict error requirements

Past efforts for correcting LiDAR

LiDAR is known to overestimate coastal marsh elevation, so previous studies make improvements by:

- Minimum Bin (MB) technique (e.g. Schmid et al., 2011)
 - Assigns minimum LiDAR ground return value within a grid cell to that grid cell
- Bias correction technique (e.g. Montane and Torres, 2006)
 - Calculates correction factors based on GPS & LiDAR DEM for each vegetation community

Few efforts were made to apply contemporary modeling to correct LiDAR for DEM improvement

Research Objective

Develop models to correct LiDAR for an improved DEM product that meets Everglades' vertical error by:

- 1) Using RTK GPS and Random Forest Regression (RFR)
- 2) Comparing RFR with Minimum Bin (MB) and biasedcorrection techniques for best results

Study area

Figure 1 Map of study area located just south of Nine Mile Pond.

Data

FDEM LiDAR ground returns

- Collected Feb 2008
- Point density 2 pts/m²

SFWMD Land cover data

- Photointerpreted from Feb-March 2004 imagery
- Real Time Kinematic (RTK) GPS
 - Collected for this study Feb 2016
 - Vertical positons < 0.03 m (1 σ)
 - 256 total (162 mangrove, 72 sawgrass, 22 road)

Methods: Proximity Analysis

To assess **accuracy of LiDAR ground returns** and **test RFR model**, the relationship between RTK GPS and LiDAR is determined **by proximity and statistical analysis**:

Methods

Minimum Bin (MB) technique

Bias-correction technique

Results: Proximity Analysis

Table 1 Descriptive statistics for surveyed GPS (Z_{GPS}) and LiDAR ground returns (Z_{LiDAR}) within a 1 m radius of each GPS. Where $\mu_{\Delta_{min}}$ = mean difference between minimum LiDAR values and GPS, all in meters.

Land cover	n	Z _{GPS}				Z _{LiDAR}				$\mu_{\Delta_{\min}}$	$\mu_{\Delta_{max}}$	$\mu_{\Delta_{\mu}}$
		min	max	μ	σ	min	max	μ	σ			
Consolidated	256	-0.55	1.1	-0.05	0.33	-0.37	1.21	0.17	0.34	0.17	0.26	0.22
Mangrove	162	-0.55	0.26	-0.14	0.11	-0.37	0.96	0.11	0.24	0.19	0.30	0.25
Sawgrass	72	-0.26	0.06	-0.16	0.06	-0.20	0.84	0.03	0.18	0.15	0.24	0.19
Road	22	0.51	1.10	0.98	0.13	0.60	1.21	1.06	0.12	0.04	0.12	0.08

For our study area:

- LiDAR continuously overestimates ground
- It is more difficult for LiDAR to penetrate surface water with dark peat soils
 below low-density mangroves compared to high density sawgrass

Results: RFR Model Performance

Figure 2 Relationships between actual and predicted elevation of all land covers for calibration and validation data.

Results: Corrected LiDAR DEMs

Table 2 Descriptive statistics for each experiment. Where RFR = Random Forest Regression, MB = Minimum Binning, $MB_{calibrated} = MB$ calibrated by the respective mean bias, Δ_{μ} = mean difference between experiment values and GPS, n = number of GPS.

Land cover	Experiment	RMSE _Z	Δ_{μ}	Median	Skew	σ	n
Consolidated	RFR	0.09	0.01	0.00	1.54	0.09	71
	MB _{calibrated}	0.20	0.05	0.00	1.22	0.19	71
	MB	0.26	0.17	0.10	1.23	0.20	185
Mangrove	RFR	0.11	0.01	0.00	1.55	0.11	30
	MB _{calibrated}	0.22	0.08	0.10	0.43	0.21	30
	MB	0.23	0.15	0.12	0.53	0.18	132
Sawgrass	RFR	0.09	0.01	0.01	0.87	0.09	30
	MB _{calibrated}	0.21	0.03	-0.03	1.64	0.21	30
	MB	0.15	0.12	0.10	1.11	0.09	42

Conclusions

Primary purpose of this study: develop models to correct LiDAR for improved DEM product that meets Everglades' elevation error requirements (±15 cm).

- Our results demonstrate the RFR-based DEM exceeds these requirements:
 - Mangrove = σ and RMSE = 11 cm; Δ_{μ} = 1 cm
 - Sawgrass = σ and RMSE = 9 cm; Δ_{μ} = 1 cm

This work has potential to better assist restoration projects with more <u>accurate</u>, precise, and high resolution DEMs.

Acknowledgements

This study was supported by

2016 Mel Marcus Fund for Physical Geography Grant

AAG AMERICAN ASSOCIATION of GEOGRAPHERS

Many thanks to Everglades National Park staff!

References

- Desmond DG (2003) Measuring and mapping the topography of the Florida Everglades for ecosystem restoration. Reston, VA: US Geological Survey Fact Sheet 021-03.
- Jones JW, Desmond GB, Henkle C, Glover R (2012) An approach to regional wetland digital elevation model development using a differential global positioning system and a custom-built helicopter-based surveying system. *International Journal of Remote Sensing* 33(2): 450–465.
- Schmid KA, Hadley BC, Wijekoon (2011) Vertical Accuracy and use of topographic LiDAR data in coastal marshes. *Journal of Coastal Research* 27: 116–132.
- Zhang K (2011) Analysis of non-linear inundation from sea-level rise using LiDAR data: A case study for South Florida. Clim Chang 106(4):537–565

Thank you!

Nature of LiDAR Elevation Data

 Light Detection and Ranging (LiDAR) elevation data collection

2. Process LiDAR where vegetation points are removed and 'ground' points remain

3. LiDAR 'ground' points never truly reach the ground, but survey-grade GPS will

Results: RFR DEM

Future Research

- Test this approach to predict e.g. HAED for other vegetation communities within the entire coastal Everglades.
- Incorporate accretion rates into DEMs for modeling water depth change due to regionally adjusted sea-level rise projections.