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Remaining fractionation of water after evaporation.
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Salinity increase from Evaporation:

=
𝑆𝑀𝐸 − 𝑆𝑀

𝑆𝑀𝐸

=
𝑆𝑀𝐸 − 𝑓 × 𝑆𝑀𝐸

𝑆𝑀𝐸

= 1 − 𝑓

Salinity increase from Mixing:

= 1 − 1 − 𝑓

= 𝑓



f can be quantified by a duel-isotope
based method





Water → Vapor

More lighter isotopes evaporate to vapor
More heavier isotopes left in the remaining water

δ18O or δD of remaining water will increase



𝜹𝒇𝑶 = 𝜹𝟎𝑶+ 𝜺𝑶 ∙ 𝐥𝐧 𝒇

𝜹𝒇𝑫 = 𝜹𝟎𝑫+ 𝜺𝑫 ∙ 𝐥𝐧 𝒇

𝜺 is enrichment factor

Rayleigh Distillation:
changes of δ18O and δD of remaining water during evaporation
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deuterium excess (d) = δD - 8.6 δ18O 
In south Florida, the average d of rainwater is 11.
d of surface water will decrease with evaporation. 
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deuterium excess (d) = δD - 8.6 δ18O 
drain=11
dsample will decrease with evaporation. 

𝛿𝑓𝑂 = 𝛿0𝑂 + 𝜀𝑂 ∙ ln 𝑓
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However, in addition to evaporation, 
saltwater intrusion also can affect δO and δD 
values. 



Stable isotope based model 
of the mixing and evaporation processes:

Visualization
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This is just our model strategy, but does nature work as we think?



Field data in October from SRS



There are 6 sites along SRS, SRS 1~6.
SRS 5 and 6 are brackish water site.
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The relative locations of different water match!



Begin to calculate the mixing and evaporation
based on the isotope-based model



Step 1

Fresh Ocean Mixing Water Line: 
FOMWL (Blue Line)



Step 2

Brackish Evaporation Water Line: 
BEWL (Green Line)



Step 2

Brackish Evaporation Water Line: 
BEWL (Green Line)

Same
slope



Step 3: Intersect of FOMWL and 
BEWL



𝑑𝑖 = 𝛿𝐷𝑖 − 8.6 ∙ 𝛿18𝑂 𝑖

𝑓𝑖 = 𝑒 𝑑𝑖−𝛿0𝐷+8.6𝛿0
18𝑂 / 8.6∆18𝑂−∆𝐷





Salinity of SRS6: ~90% from Saltwater intrusion, 
~10% form Evaporation in Oct



On-going work

• Collecting river and rain water of SRS . 

• Collecting ocean water from Gulf.

• SRS weather data.

• From Oct2016 to Oct2017: cover wet and dry season

• Long-term simulation of the contribution changes under sea level rise 
and increasing temperature



Thank you!


