Energy partitioning and sensitivity to low temperature events of Everglades wetlands

Sparkle L. Malone, Jordan Barr, Jose D. Fuentes, Steven F. Oberbauer, Christina L. Staudhammer, Evelyn E. Gaiser, Gregory Starr

Presenter: Junbin Zhao Florida International University

Wetlands Have a Great Potential for Carbon Sequestration

Ocean (40,000 Gt C)

Fossil Fuels (6,000 Gt C)

Land/ Plants/ Soil (2,200 Gt C)

Atmosphere (800 Gt C)

Slow decomposition and C accumulates over long time periods

 Representing just 5-8% land cover, wetlands contain ~68% soil C

• The stability of this large C pool is uncertain due to human influence and climate change

Subtropical Wetland Ecosystem

Hydrology is the most important factor for wetland structure and function, including **energy partitioning**.

R_n: Net Radiation
H: Sensible Heat
LE: Latent Energy
G_W: Energy stored in water
G_S: Energy Stored in the soil column

Bowen Ratio (β **): sensible heat / latent heat**

- β seasonality increases with variation in hydroperiod.
- The β was higher during the dry season when the amount of energy partitioned to the H flux increased.

Historical frequency (days) of low-temperature events (< 5 °C) in Everglades National Park (1950–2012).

Station	Event frequency	Mean annual frequency
Everglades (EVG)	476	7.8
Royal Palms Ranger Station (RPR)	404	8.4
Flamingo (FLG)	333	5.5
Tavernier (TAV)	37	1.8
Average	313	5.9

Average temperature during the low temperature days in 2010

NEE (g CO₂ m⁻² yr⁻¹)

Sensitivity

• A reduction in CO₂ exchange rates

Different sensitivities of CO₂ fluxes to lowtemperature events

Conclusion

- Seasonal hydrological pattern controls ecosystem energy partitioning and further determines the frequency and intensity of low-temperature
- Where low-temperature events are less frequent (mangrove), there is an increase in NEE (greater CO₂ loss).

Significance

- More frequent extreme events
- Ecosystem carbon balance