Rates of and factors influencing Phosphorus Flux in the Stormwater Treatment Areas

Mike Jerauld¹, Tom DeBusk¹, John Juston¹, Dawn S. Finn¹ and Jill King²

18 April 2017

¹ DB Environmental, Inc.
² South Florida Water Management District

Flux chambers at STA-2 Cell 3 mid region

Net Flux

Relevance to STA outflow concentrations

Juston and DeBusk, 2011. WRR 47:W01511

Net Flux

Relevance to STA outflow concentrations

Study area and experimental design

Diffusive flux potential

Net Flux

Diffusive flux measured over a range of loading conditions

Net flux rates

Example data set: March 2016

Calculated from $\delta C/\delta t$ between time of chamber closure and achievement of equilibrium

Comparison of flux rates

Example data set: March 2016

Flux: sources and vectors

Net Flux

What are the sources and vectors (mechanisms) contributing to net flux in STA outflow regions?

• Vector: Diffusion?

- Vector: Diffusion?
- Source: Soil?

- Vector: Diffusion?
- Source: Soil?
- Source/vector: Vegetation?

- Vector: Diffusion?
- Source: Soil?
- Source/vector: Vegetation?
- Antecedent loading

Next steps: identify flux sources and vectors

Measurements in additional flow ways and hydraulic conditions

Refine experimental platform to better resolve effects of vegetation and soil character

Novel methods to identify fate and transformation of fluxed P

Supplemental Information

Diffusive flux: porewater equilibrators

Installed to depth of 30 cm below floc surface

7 composite samples from each peeper

Diff. flux calculated from gradient across interface

1000

Net flux: in situ flux chambers

STA-2 Cell 3 OUT Google Earth – Feb 2016

25 m

000

....

- 1.5 m diameter
- Open top, open bottom
- Installed in marsh "in situ"
- Large openings allow exchange with marsh
- Vegetated & unvegetated

Introduction

Net flux: in situ flux chambers

- Openings sealed during 2-wk monitoring events
- Surface water sampled at t = 0, 1, 3, 7 & 14 days
- Analytes: TP, TDP, SRP, TN, TDN, NH4, NOx, DOC
- Net flux calculated from rate of change between t=0 and achievement of equilibrium

Net Flux

