Integrated Landscape Trends of Hydrology, Nutrients, Soils, and Vegetation Under Future Management Scenarios

GEER 2017

H. Carl Fitz^{1,2} Hilary D. Flower² Mark C. Rains²

¹EcoLandMod, Inc. ²Univ. South Florida

ELM Design: Integrating ecological interactions

- Ecosystem model, integrating dynamic processes of hydrology, biogeochemistry, & plant biology
- Arrows denote flows of carbon, water, & phosphorus, and information feedbacks among modules

ELM Design: Pattern-process spatial interactions

- Landscape *pattern* (of habitats) affects local ecosystem *processes*
- Processes affect landscape pattern (via habitat succession)
- Canals represented by exact vectors, dynamic canal-marsh interactions; managed flows at point water control structures
- Integrated surface-ground water exchanges

ELM skill assessments

- Calibration/validation (decadal history-matching) statistics
 - Marsh stage (median, 82 stations): bias= 0 cm; NS Efficiency= 0.61
 - Water quality bias (median, 78 stations):
 - Phosphorus: marsh= 0 mg•L⁻¹; canals= 0 mg•L⁻¹
 - Chloride: marsh= 8 mg•L⁻¹; canals= 13 mg•L⁻¹
 - Sulfate: marsh= 0 mg•L⁻¹; canals= -2 mg•L⁻¹
 - Other ecological metrics
 - Range of analyses at multiple scales/regions (soil processes, succession of cattail, sawgrass, mangroves ...)
- Peer reviews over past 20+ years
 - Research journals (Ecol Model; Restor Ecol; Crit Rev Env Sci Tec; Sust Water Qual Ecol; …)
 - Applications for CERP (Independent Panel; Interagency Modeling Center)

ELM applications:

Scenarios - water quality & periphyton

GEER 2017 session,

Evelyn Gaiser, Melodie Naja, Daniel Childers, and Carl Fitz

Scenarios - soils

GEER 2015 session, Todd Osborne, Carl Fitz, and Steve Davis Restoration Ecology (2017) doi: 10.1111/rec.12496

Scenarios - sulfate & methylmercury distributions

GEER 2017 session, William Orem, David Krabbenhoft,

George Aiken, and Carl Fitz

Related CERP ASR project w/ others: Sust Water Qual Ecol (2014) doi:10.1016/j.swaqe.2014.11.004

ELM application:

Visioning the future: scenarios modeling of the Florida Coastal Everglades (FCE)

Just submitted to Environmental Management; Hilary Flower, Mark Rains, and Carl Fitz;

SFWMM runs provided by Jayantha Obeysekera and Jenifer Barnes (SFWMD)

Ecological Landscape Modeling

ELM application overview

- Compare landscape responses among 36-yr scenarios of climate change and Sea Level Rise (SLR)
- Climate-SLR bookends
 - § Existing condition Base
 - § Increase rain 10%; Increase temp 1.5° C & pET 7%; Increase Initial sea level by 50cm
 - § Decrease rain 10%; Increase temp 1.5° C & pET 7%; Increase Initial sea level by 50cm
- Water management & ecology
 - § **SFWMM** water management (Obeysekera & Barnes, SFWMD)
 - § ELM driven by SFWMM (point) water control structures, then simulated finer scale hydrology and ecological dynamics
- Hydro-ecological Performance Measures
 - § Water depths & flow velocities
 - § Phosphorus & chloride concentrations (sulfate ignored here)
 - § Soil processes
 - § Succession among habitats

Everglades National Park (model subdomain)

Ecological Landscape Modeling

Surface water depth

Surface water chloride

Ecological Landscape Modeling

FCE SRS transect gradients: Water depth & chloride

Spatio-temporal gradients: chloride

Ecological Landscape Modeling

Ecological Landscape Modeling

Phosphorus accumulation

Ecological Landscape Modeling

Habitat succession

Ecological Landscape Modeling

Habitat succession synthesis

Ecological Landscape Modeling

Integration...

- Modeling & data-research integration advancing
 within FCE LTER program
- ELM: Ecosystem process integration works (but difficult: e.g., "funky" model vegetation can cascade to dynamics of soils, nutrients, ...)
- ELM: Extrapolate local-scale research understanding across heterogeneous landscapes & multiple decades (aka spatio-temporal integration)
- FCE: Multi-model integration, with linking/learning among models of various scales and processes
- Iterative process, leading to improved models*, and to refined hypotheses

* All models are wrong, but some are useful.

.... End of meeting – sail away!

http://www.ecolandmod.com